Yankee Clipper

Scuttlebutt

Contest Club

April 1997

Happy 20th Birthday, YCCC!

Issue 128

Captain's Cabin

Tom Frenaye, K1KI

Wow! What an effort we had in the ARRL DX Contest this year! We're at 135m points and counting, with about 165 entries - compare that to our 1996 effort that resulted in 77m points from only 104 entries. Your hard work in station building and operating is beginning to pay off in points for the YCCC club competition entry. It'll be late September when the final results come out in QST but we know that we gave a real shot at top spot this time!

This may get to you before the CQ WPX SSB Contest on the weekend of March 29-30 - please plan to get on the air and earn some points for the YCCC. We almost beat the club record in last year's WPX contest so let's see if we can grab the record and the win this year.

It's hard to believe it has been a year since I walked into the April 1996 YCCC meeting a bit late, found out I'd been elected President and listened to a passionate debate over how to get club members focused on winning the CQ and ARRL DX Contests. I think you'll agree that it has been an extraordinary year for the YCCC, with the addition of a large number of new members, a lot of old faces turning up at meetings again, and the addition of regional meetings.

It has all been possible because of the many people who stepped forward and contributed. I'm looking forward to the next year, with the expected return of long lost sunspots and the continuation of the YCCC tradition of winning DX Contests!

There are a few things that remain unfinished from the past year that I'd like to suggest we concentrate on during the 1997-98 contest season:

- 1) Getting every YCCC member on the air during the major contest weekends and on both modes if at all possible.
- 2) Fielding a lot more DXpeditons, especially during CQWW where they are very important to the final score.
- 3) Continuing the effort toward electronic publishing of the Scuttlebutt and other YCCC material two-thirds of our budget goes to printing and mailing the newsletter.

One new goal to think about for this coming year (or 1998) is for YCCC to put on some kind of event like a convention/dinner with programs and presentations that focus on our common interests of contesting, DXing and station building. We have the people and resources to be able to do it - is anyone interested in exploring the idea to see if it might be viable?

April Meeting Agenda Dean Straw, N6BV

1. A short business session conducted by Tom Frenaye, K1KI, President

- 2. "How'd We Do in the ARRL DX Contest?" by Dave Hoaglin, K1HT, YCCC Scorekeeper
- 3. Coffee Mug Presentations! Come and get 'em -- you earned 'em!
- 4. "YCCC: 20 Years Young and Getting Better Every Day" by Jeff Briggs, K1ZM
- 5. "What's New and Exciting at Cushcraft?" by YCCCer Art Hambleton, K1ART, Product Manager for HF Products at Cushcraft

As usual, there will be ample time to rub shoulders and socialize with fellow YCCCers!

Come on out to Sturbridge April 6 at 1 PM. It should be a great meeting! □

Yankee Clipper Contest Club 1996-97 Officers and Staff

President Tom Frenaye, K1KI

(860) 668-5444 frenaye@pcnet.com

Vice President R. Dean Straw, N6BV (603) 425-2427 n6bv@arrl.org

Secretary-Treasurer Charlotte Richardson, KQ1F (508) 562-5819 richardson@wrksys.enet.dec.com

Scuttlebutt Editor Leonard Kay, KB2R (617) 938-8582 lkay@tiac.net

Area Managers

CT:

Glenn Swanson, KB1GW (860) 673-5429 gswanson@arrl.org

EMA:

Tony Brock-Fisher, K1KP (508) 689-4126 fisher@hp-and.an.hp.com

ME:

Peter Archibald, N1AFC (207) 767-2169 pba@server.nlbbs.com

NLI:

Rich Gelber, K2WR (212) 580-1075 k2wr@njdxa.org

NNY:

George Wilner, K2ONP (518) 279-4025 k2onp@aol.com

RI:

Jeff Bouvier, K1AM (401) 658-1122 k1iu@ids.net

SNY/NJ/PA:

Hank Kiernan, KF2O (914) 235-4940 hankkier@aol.com

WMA:

Bob Tublitz, WT2Q (413) 298-4222 rtublitz@vgernet.net

VT/NH:

Glen Whitehouse, K1GW (603) 673-6290 glenw@cushcraft.com

CAC/DXAC Representatives:

New England

Kurt Pauer, W6PH (603) 673-7201

0006743923@mcimail.com

CAC Hudson Rich Gelber, K2WR (212) 580-1075 k2wr@njdxa.org

DXAC New England Jim Dionne, K1MEM k1mem@aol.com

DXAC Hudson Bill Hellman, W2UD (914) 528-6845

The Yankee Clipper Contest Club (an ARRL affiliated club) holds six general meetings per year in Sturbridge, MA and various special meetings throughout club territory. Attendance at a meeting is required to become a member.

Articles in the **Scuttlebutt** (except for those separately copyrighted) may be reprinted, provided proper credit is given. The editorial deadline for the Scuttlebutt is the 10th of every odd month.

For any club-related questions, contact your area manager or any officer.

Beverage Notes

Glenn Swanson, KB1GW

A fter convincing (bribing?) Peter Budnik, KB1HY, to host a first-time multisingle effort from his Burlington, Connecticut, QTH for the '97 ARRL DX SSB contest, I offered to help him with some antenna work, with an eye toward beefing things up on the low bands. Peter's antenna farm sits on nearly six acres at roughly 900 feet above sea level and looks over *miles* of sloping terrain--and in the "right" direction--towards Europe! It looked like Peter's place might have enough room to support a short (550-foot) Beverage, so I educated myself a bit using the second edition of *Antennas and Techniques for Low-Band DXing*, by John Devoldere, ON4UN. Among other things, John provides useful advice about using transmission-line transformers to match coaxial feedlines to Beverages.

Posts on the Top-Band Reflector mentioned a matching-transformer kit available from Carl, KM1H, who runs Radioworks in New Hampshire. He supplied me with a couple of ferrite cores along with winding information. KM1H specifies the use of an FT-114-61 core with 16 quadrifilar windings. His design offers the ability to separate the Beverage ground connection from the feedline shield. Alternatively, with the addition of a jumper, you can tie these two "grounds" together. The ON4UN design specifies trifilar windings for a variety of cores, with all ground lines in common (more on this later).

I decided to roll a couple of my own, using both ON4UN's and KM1H's design information. After building one of each type, I asked Dave Sumner, K1ZZ, if he could give 'em a "test drive." While his investigation was neither exhaustive nor scientific, K1ZZ used the two designs on his 550-foot terminated Beverage. He compared them using the same antenna, both with and without a matching transformer. Dave reported that the ON4UN design seemed to add "several dB" on receive--but he was reluctant to further quantify his observation without measuring. Dave also noted that it didn't make that much difference in his ability to hear signals, since both external noise and signals came up by the same degree. Not big news, but the experience convinced Dave to get three more of the ON4UN-design matching transformers for use with other Beverages.

Tests made with the KM1H-designed transformer resulted in less-than-spectacular results. As I mentioned, the KM1H design uses separate grounds-for the antenna ground and for the feedline shield. In fairness to KM1H, I could have done more work in this area--for example, putting the two "grounds" together and testing it that way. (ARRL antenna guru Dean Straw, N6BV, advises that he'd prefer to see all grounds tied together in such a system.) Since the ON4UN design seemed to work well right from the start, I decided to stick with it.

Building the transformers

Antennas and Techniques for Low-Band DXing says, "A 9:1 impedance transformer [using a high permeability ferrite core] will give a more than acceptable match for both 50 ohm and 75 ohm [feed] lines." And, "A transmission line transformer using trifilar winding is well suited to this purpose." Such a transformer should match the 450 to 600- Ω (nominal) impedance of a Beverage to either type of coax you might use.

John also relates that Victor Misek, W1WCR, has found that using the same winding information--and using a *stack* of two ferrite cores (made of the same material or "mix"), results in a transformer that yields "a 0.4 dB improvement in insertion loss." For example, W1WCR found that a stack of two (MN-8-CX) cores resulted in an insertion loss of 0.21dB on 160 meters, as opposed to an insertion loss of 0.51dB with a single core.

page 2

To wind my transformers, I used nine trifilar turns of #24 enameled wire over a stack of two Amidon FT-50-75 ferrite cores. (These cores are pretty small, with an inside diameter of 0.28-inches and an outside diameter of one-half inch.) Such a transformer has a "minimum design frequency of 1.8 MHz," according to ON4UN.

Putting nine "trifilar" turns of wire on a stack of two ferrite cores is easy. Just cut off three separate three-foot-long lengths of #24 enameled wire from a roll of the stuff. Place the three lengths of wire side-by-side and give them a twist every inch or so along their length. Now pass this little cable through the two cores nine times, and you're done (each pass of the wire through the doughnut hole counts as a "turn," including the first pass). Cut the resulting pigtails to the lengths you require and sand or scrape the enamel finish off the ends of the wires (so the wire shines). Use an ohmmeter to identify the windings and label the end of each wire per the diagram in Low Band DXing (Figure 7-11, page 7-12.) Other types of ferrite core material also will work (two tables on the same page show you how to determine how many turns of wire you'll need for each type of ferrite material). You can coat the finished transformer (cores and windings) with a couple of coats of low-loss coil coating (I used liquid polystyrene or "Q-Dope"), or simply wrap the transformer with some goodquality electrical tape (like Scotch 88).

To house each transformer, I used small plastic box (1x 2x 4 inches HWD) from Radio Shack (part number 270-220). Drill a 5/8-inch hole (to house an SO-239) in the center of the box (and drill four 4/40 holes to mount the SO-239's flange). Then drill a 10/32-inch hole at each end of the box. The SO-239 accepts the coaxial feedline leading back to the shack from your Beverage. At one end of the box a 10/32 stainless-steel nut and bolt are used for the antenna connection. The ground-rod wire attaches to the same type of bolt at the opposite end of the box. Be sure to waterproof any thru-the-box connectors that will be exposed to the elements and you should be all set. One caution: Don't transmit into your Beverage via the matching system described here. While folks can, and do, transmit into Beverage antennas, this matching system--and the terminating resistor at the "far" end of your Beverage--will likely go up in smoke if you do!

What's it cost?

If you're resourceful, you should be able to build these matching boxes for around \$10 to \$15 a pop. The plastic boxes are about \$2 from Radio Shack. I ordered the cores, enameled (magnet) wire, SO-239s and Q-Dope from Ocean State Electronics in Rhode Island (800-866-6626). The FT-50-75 cores cost me \$0.75 each; the #24 magnet wire was \$4.25 for 1/4 pound; the SO-239s were \$1; a bottle (2 fl oz) of Q-Dope was \$3.75, plus a \$5 shipping charge. Add the stainless 10/32 hardware, 4/40 hardware, and lug connectors (for internal connections), to the total cost.

Purchasing Transformers

If you're not interested in scrounging the parts, winding the cores, and doing a bit of soldering to brew one of these yourself, then you can order a ready-made box from Industrial Communications Engineers (ICE), Box 18495, Indianapolis IN, 46218; tel, 317-545-5412.

ICE offers a Model 180A matching box for \$39 (plus \$4.50 for shipping). The 180A has taps to select 50 or 75- Ω coax feedlines. There are also taps to match 300/450/600 or 800- Ω Beverage

antenna loads. The 180A has dc blocking capacitors and a gas-discharge lightning protection system. ICE also sells a Model 181A (\$39), which allows you to apply a dc voltage into your Beverage for remote switching. Like the 180A, the '181A has a gas-discharge protection system. Finally, they offer a Model 185A "resistive load" to terminate your Beverage with. It has same high-impedance taps as the Model 180A and it costs \$34. These units are rated for 10 W of continuous RF and 100 W on peaks. (I was told that these ratings are not specified for transmitting into the boxes. Rather, they are what the boxes can withstand when your Beverage picks up energy from nearby transmitting antennas.) All of these boxes are made of 1/8-inch extruded aluminum (milled and tapped). And, if you're looking to buy American, they're all made in the USA. (Prices, model numbers and telephone number were valid as of February 5, 1997.)

Transmitting, Terminating and Wire

Another Burlington, Connecticut, resident who has a nice location is YCCCer John Larson, NQ1K. Sitting on an average terrain of 670 feet above sea level, John has a panoramic view of the surrounding countryside. And he's got a 550-foot Beverage that he's managed to transmit into a time or two. However, he used #18 wire for his transformer windings. In addition, John's Beverage is not terminated (with a resistor) at its far end, so this allows him to apply some power to the system. The lack of a terminating resistor also makes his Beverage bi-directional (receives best off each end of the antenna).

Speaking of terminating resistors, Dave, K1ZZ, originally used a variable carbon resistor to set up his Beverage. He eventually found that terminating his 550-foot Beverage with a $200-\Omega$, non-inductive resistor provided the best front-to-back ratio.

The "500-foot" roll of wire John, NQ1K, purchased (from Home Depot) turned out to be not quite 500 feet long. He ended up splicing on another 60 to 70 feet of wire for his 550-foot Beverage. (Which means the "500 foot" roll was closer to 480 or 490 feet.) John used electric-fence insulators nailed to convenient trees to keep his Beverage an average of 12 feet above ground. The electric fence insulators are pretty cheap, too. John paid three bucks for 40 of them!

RF Feedback?

Dave, K1ZZ, recently observed that if he switches his Beverage [in line] while transmitting, "my keyer goes crazy." He speculated that there's some kind of transient he never noticed before. "It's probably easier for me to remember not to switch the Beverage while transmitting (why would you want to, anyway, except to burn off nervous energy) than to figure out what's causing it," he said. "Perhaps it's the sort of effect that Carl's design was intended to avoid."

I suspect Dave's "transient" may be a result of RF feedback. (Here's where some experimentation with the KM1H-design transformer, with its ability to isolate the feedline shield from the ground at the Beverage matching box, might be worthwhile. But, I'll leave this for others to explore).

 $(continued, next\ page)$

Here's another idea

Gary Nichols, KD9SV, introduces a nifty-looking circuit you can build, in the February 1997 *CQ* (page 32-33). This QSK-compatible circuit is designed to protect your receiver from being overloaded (or possibly damaged) by RF that might be picked up by your Beverage while you're transmitting on another antenna. This project (it's offered both as a kit and as a finished product), might be worth a look--especially if your radio was not designed with a Beverage in mind. Homebrewers will appreciate that the article provides a schematic and calls out Radio Shack parts numbers for this project.

Ideal Beverage Lengths

What's the "right" length for a Beverage? Frank Donovan, W3LPL, posted the most succinct discussion on this subject that I've seen to date. You can find this, and other useful information, at the KA9FOX Web site. Surf to: http://www.qth.com/ka9fox/mail_summaries.shtml

Ideal Beverage Antenna Lengths [per W3LPL]

160M:	290 Feet	585 Feet	880 Feet	1160 Feet
80M:	150 Feet	295 Feet	440 Feet	580 Feet
40M:	75 Feet	150 Feet	225 Feet	295 Feet

Short Beverage antennas have a very broad main lobe, poorer response to low-angle signals and lower sensitivity. Of the four lengths listed above, the shortest length has a 3-dB beamwidth of almost 180°--not very desirable!

The second length has a 110° beamwidth (better, but still not good), the third length has an 80° beamwidth and the longest length has very desirable 50° beamwidth (but only 17 to 18-dB front-to-back ratio)."

In Closing

I consider chapter 7 of ON4UN's book required reading for those contemplating the deployment of a Beverage antenna system. When engineered properly, Beverage receiving antennas work great--and not just on the low bands. They can be used successfully on the higher bands too, like 20 meters, for example. Finally, if you want some exercise, you can always go out and "walk the Beverage," to see if the wire has been broken along its length. By the way, falling branches and deer seem to cause most broken-wire problems with Beverage antennas.

Happy (multiplier, not deer!) hunting. □

Flotsam & Jetsam

"Barnacle Jack" Schuster, W1WEF

Please send your experiences and ideas to share with fellow YCCCer's! Drop me a note or use packet.

- Just get your first ICOM rig and find that your Kenwood mic doesn't work? ICOM uses condenser mics, so it is necessary to put a blocking capacitor in series with your dynamic mic. A 6.8 µf polarized cap with + to pin 1 of the mic connector does the trick.
- IIX rotating sidearms have an upper sleeve that supports a short mast, with the lower end of the mast in the rotator on a lower shelf. The upper sleeve and the rotator supports mount on one tower leg, and can twist into misalignment under wind loading, and cause the mast to bind in the sleeve. When you go up the tower to realign the two halves, bring a short level to ensure that the mast is at least close to vertical. I intend to add an angle iron brace to another tower leg to prevent twisting.
- When cutting wire antennas to length using *insulated* wire, reduce the calculated length by 2% to account for difference in velocity factor between bare and insulated wire.
- AK1N uses a product sold in some hardware stores under the name Scotchkote 90 to seal and protect connections. It is a liquid plastic intended for applications like plasticising tool handles.
- When installing antennas on a Rohn tower with a flat top section, AB1U places a second rotor accessory plate above the rotor. When it is necessary to service the rotor, a clamp can temporarily be installed to rest on that plate, allowing the rotor to be removed. The thrust bearing alone cannot be counted on to support the antennas and mast without the rotor.
- When opening "sealed" enclosures used in antenna systems, W1BIH (PJ9JT) says be prepared for unexpected inhabitants. Wasps always manage to get into traps and inside elements, and in Curacao a scorpion crawled out of an R7 matching network.
- When calling a station in a huge CW pileup, timing is important, but intentionally calling off frequency by 300 Hz or so can *really* make the difference. In a split situation, don't call on exactly the same frequency as the last station that was worked, move off a bit. □

CQ 160-CW Claimed Scores

Dave Hoaglin, K1HT

YCCC Scores in BOLD

(Other NE USA scores from the Contest Reflector thanks to WA4ZXA)

CALL	SCORE	QSO'S/S	EC/DX
Single Op QRF			
N1TM	19,240	230 34	. 3
K3WWP	6,300	117	25
KD1IA	4,368	74 73	
N3ADL	2,596	53 22	
KD1IA	1,768	74 73	
Cinala On Law	Dawer		
Single Op Low		726 56	21
K1HTV	166,605	726 56 419 49	
K2KQ	81,326		
AB1U	80,676	314 49	
WO1N	62,766	350 45 270 47	21
WITE	60,014		
W1CSM	57,368 49,029	293 48 353 52	23 7
WA2DFI N2BIM	18,029	198 40	
W3CP	17,466	193 39	
N2VW	6,336	93 32	
K1EP	3,496	76 23	0
K1WD	1,536		0
0: 1 0 11: 1			
Single Op High		1100 50	
W3LPL (W4ZV)			58
AA1K			54 57
W3BGN N2NT (W2RQ)	378,620 369,304	838 53 1011 48	56
K3UA (@K3LR)	355,500	740 55	56
K2WK	267,500	631 52	
K5ZD	246,574		45
KM3T	243,360		42
K1VW	181,056	640 53	
WF3T	175,648	677 56	32
K1ZZ	128,054	362 47	39
K3JT	123,570	459 55	
K3SV	118,607	501 50	
AA10N	83,068	369 47	
N4XR	72,688	311 47	
K2ONP	59,283	281 43	
K2XA	49,038		32
KZ1M	43,264	343 41	
KA1DWX	25,652	140 33	20
<u>Multioperator</u>			
WW2Y 8	07,000 13	63 57	73
	96,000 13		68
	55,960 10		59
+ W1FJ W1K		O N1BB	F.C
	06,339 10 66,660 10		56 49
		90 56 91 57	53
	-	27 57	49
		27 55	32
		35 45	26
		73 50	33 + NET
		40 43	40 + NET
		12 48	20 +NT2X WJ1R
K2BM	56,137 2	25 43	30
K2BX	8,316 1	05 36	0 + NET

CQ 160 Phone Claimed Scores

Dave Hoaglin, K1HT YCCC Scores in BOLD

(Other NE USA scores from the Contest Reflector thanks to WA4ZXA)

CALL	SCORE	QSO'	S/SE	C/D	Σ	
Single Op Q	RP					
N1TM	22,532	240	38	5		
Cimala On II	iah Dawar					
Single Op H		1010	ГС	20		
W3GH AA1AA	245,820 228,463	1210 1033				
N3HBX	189,672					
K1VW	181,192					
W2SF	41,259		33	33		
W25F KA1DWX	27,657		4 =	18		
	-					
W1AA(K1VV)						
N1BB(chklo	g) 938	32	14	0		
Single Op Lo	ow Power					
AB1U	35,868	247	49	12		
WO1N	25,599	208	44	9		
AA2GS	24,728	257	41	3		
W1TE	24,700	218	42	8		
W3CP	12,246	145	36	3		
N1IO	11,895	135	36	3		
N1RJF	2,178	56	18	0		
Multi-Op						
W2GD	458,480	1541	58	52		
K1NG	311,564				+KI1G	K1SD
AA2MF	162,180					
K2WK	124,066					
K3MD	123,075					
K3IXD	109,512					
K1MUJ	55,000				KZ1M	K1ZE
AA3B	36,057			5		
	•					

ARRL DX CW Claimed Scores

Dave Hoaglin, K1HT

YCCC Scores in BOLD

YCCC Scores in				K1ZM (total)	339,264	608		
(Other NE USA so	cores from the C	Contest I	Reflector -	AA1HB	218,790	429	170	
thanks to WA4ZX				N2UN	210,195	405	173	
	/			K1BV	189,891	541	117	
YCCC	C raw total: 8	9 4 mi	llion !!	W1RH	184,824	408	151	
				K1MO	141,636	319	148	
CALL	SCORE	Q	С	W2GDJ	124,581	317	131	
Single Op QRP				NZ1Q	93,534	262		
AA2U	363,156	571	212	K1VV	76,935	223	115	
N1TM	184,800	385	160	K1TH	39,216		86	
K2PS	158,625	375	141					
N1AFC	157,320	380	138	Single Op Assiste				
K1RC	131,109	319	137	K1NG (KI1G)	3,334,548	2597		
Single Op Low Po	owor			K3WW	2,871,255	2423		
		1000	212	AA1K	1,976,688	1776		
VP2V/K1DW	1,208,400	1900		K2WK	1,835,928	1780		
P4/K2LE	1,060,668	1708	207	AA3B	1,708,854	1769		
***	1 060 005	1 40 5	0.01	W2UP	1,522,410	1637		
K2SG	1,260,285	1495		N4XR	1,319,880	1294		
WS1E	775,500	1100		K2TE	1,267,728	1372		
NA2U	710,424	1012		N2TX	1,155,777	1171		
WT10	596,700		225	K2XA	1,152,744	1117		
K1VUT	558,888		232	KS1L	1,139,562	1347		
K1VW	530,565		217	K2ONP	1,112,859	1249		
W1SA	390,897		169	к3ко	1,107,078	1227		
W1ZZ	345,462	559	206	KZ1M	844,074	1078		
K1NO (K5FUV)	268,068			W1RZF	704,925	975		
W1EQ	246,753		171	KF2O	566,892	724		
K1EFI	205,452		156	KG1D	558,420	820	227	
K1ZE	203,175		175	AA1V	476 , 766	654	243	
N1RJF	181,770		146	W3HVQ	411,450	650	211	
K3PP	161,352		166	K1RM	404,586	798	169	
K1HT	153,900		150	W2SF	344,421	501		
W3CP	142,728		152	K1SM	338,928	614	184	
N1SNB	130,680		132	N1CC	329,157	501	219	
KD1YN	108,927		133	W1TE	311,688	468	222	
K10A	92,569		121	WA4VKD	281,160	568	165	
K1EP	62,160		112	N1DG	253,989	409	207	
K2JL	56,430		110	N6RFM	230,202	406	189	
WB2VVV	52,155		95	N1SP	187,935	335	187	
N2OC	47,736		102	K3AR	167,904	318	176	
AB1U	45,510	185		KA10	161,175	307	175	
K1VSJ	31,005	159		W1UK	119,928	527	76	
WU1F	23,664	116	68	WA4VKD	281,160	568	165	
W1OHM	15,753	89	59	KB2HUN	92,880	215	144	
KB2R	13,920	80	58	K2BX	71,529	211	113	
K1WD	10,488	76	46	K2EP	69,165	265	87	
N1SMB	10,206	63	54	K1AJ	56,430	198		
NJ1F	5,040	48	35	KS9Z/1	50,616	152		
Single Op High P	ower				-			
MJ/K2WR	615,000			Single Op Assiste		400	011	
110 / 112 / 112	013,000			AA2GS	258,264	408		
W1KM	3,200,000	2915	366	N3ADL	207,270	331		
K5ZD (W2SC)	3,123,750	2975		W1XK	160,200	356		
KQ2M	2,710,000	2699		K1RV	119,472	304		
	2,518,452	2591		W2XX	79,788	218		
N6BV K3ZO	2,428,056	2498		KE4GI	71,904	224	107	
KT3Y	2,428,036	2498		Single Band				
NJ2L	1,529,898	1802		K1ZM	56,280	268	70	160
K3MD	1,258,752	1416			30,200	200	, 5	. 50
K1AM	1,255,188	1630		W1 MTZ	278,733	1021	91	80
K1ZR (@KB1SO)	1,071,036	1692		W1MK W1UK	119,928	526	76	30
AA1ON	1,056,320	1335					76 28	
-21-011	1,000,020	1333		N1RR	5,796	69	40	
A 11 4 0 0 7						,		

KV1W (K1MBO)

K1ZM (total)

K5MA

K3SA

KA1DWX

780,678

532,140

517,608

370,872

339,264

1098 237

980 181 728 237

608 208

608 186

NSIM								— The YCC	C Scuttlebutt
NFIL (LP) 102,051 493 69 20						KC1X	x	5,899,275	4178 471
WAISTON (LEP)	WS1M	230,175	775	99 40)	K1AR		5,824,125	
MAIFCN (LP) 26,280 146 60 15				00					
MAITCH 15,729 107 49 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	WF1L (LP)	102,051	493	69 20)				
Multi-Single	WA1FCN (LP)	26.280	146	60 15	•				
Multi-Single Payer S. 602,896 5694 328 Wiltimary Single Op 10,7 10,7 11,7 11,6 4202 498 Wiltimary Single Op Op Op Op Op Op Op Op		-			•				
## ## ## ## ## ## ## ## ## ## ## ## ##	Multi Cinala	-				Multi	-Multi		
Marting 1,469,200 2800 413		5 602 896	5694	328				7,326,720	4788 512
NARS 2,027,550 1931 350 NARS 6,457,500 4423 487 NARS 1,471,428 1602 338 NARS 1,471,542 1670 305 NARS 1,471,554 1670 306 NARS NARS 1,482,323 3639 445 NARS NARS NARS 1,482,323 3639 445 NARS NA	POSC	5,002,690	2034	320				7,117,416	
Name	W3BGN	3,469,200	2800	413					
Name									
Name									
Name									
NIAN 907, 326 1137 266 266 267, 326 3739 209 267, 32									
Multi-Two Mark Ma	W1NR		443	244					
Band Breakdowns	Multi-Two							-	
CALL 160 80 40 20 15 10 SCORS Single Op Arrows	<u>Ividiti- i wo</u>					WIGH		403,333	755 205
CALL 160 80 40 20 15 10 SCORS Single Op Arrows	Band Br	eakdowns						Multi	Operators
Nith 10/10 38/ 28 114/ 44 178/ 51 47/ 27 0/ 0 184,800 RZPS 0/ 0 22/ 17 65/ 32 216/ 54 70/ 37 2/ 1 158,625 Single Op High Power Wirm 126/51 507/ 73 733/ 78 1300/ 95 240/ 65 9/ 4 3,200,000 KSZD 102/46 460/ 65 834/ 87 1432/ 92 145/ 58 2/ 2 3,123,750 NJZL 48/32 276/ 56 303/ 67 1109/ 84 67/ 44 0/ 0 1,529,898 KIAM 0/ 0 336/ 61 476/ 68 660/ 71 155/ 55 3/ 2 1,255,188 KIZZ 18/16 250/ 50 326/ 51 1061/ 77 40/ 19 0/ 0 1,083,105 NITT WILES WILT X INTO WILT X INTO 16/15 134/ 44 189/ 48 424/ 66 117/ 50 4/ 2 596,700 KILT X INTO WILT X INTO 16/15 134/ 44 189/ 48 424/ 66 117/ 50 4/ 2 596,700 KILT X INTO WILT X INTO W			40	20	15	10	SCORES		<u> </u>
Single Op High Power Wilk 126/51 507 73 733 78 1300 95 240 65 9	Single Op	O QRP						Call	Ops
Single Op High Power WIRM 126/51 507/73 733/78 1300/95 240/65 9/4 3,200,000 KSZD 102/46 460/65 834/87 1432/92 145/58 2/2 2,3,123,750 WILM KIZW K								Multi-S	<u>Single</u>
WILM 126/51 507/ 73 733/ 78 1300/ 95 240/ 65 9/ 4 3,200,000 K52D 102/46 460/ 65 834/ 87 1432/ 92 145/ 58 2/ 2 3,123,750 K32D 102/46 460/ 65 834/ 87 1432/ 92 145/ 58 2/ 2 3,123,750 K32D 48/32 276/ 56 303/ 67 108/8 467/ 44 0/ 0 1,529,880 K12R 18/16 250/ 50 303/ 67 108/8 467/ 44 0/ 0 1,529,880 K12R 18/16 250/ 50 326/ 51 1061/ 77 40/ 19 0/ 0 1,083,105 Single Op Low Power K2SG 45/30 145/ 52 408/ 73 738/ 71 153/ 52 6/ 3 1,260,285 WT10 16/15 134/ 44 189/ 48 424/ 66 117/ 50 4/ 2 596,700 K1VUT 18/16 155/ 46 180/ 61 349/ 62 96/ 46 5/ 1 530,565 W12Z 15/14 777/ 37 160/ 57 233/ 59 74/ 39 0/ 0 345,462 W12Z 15/14 777/ 37 160/ 57 233/ 59 74/ 39 0/ 0 0 345,462 W12Z 15/14 777/ 37 160/ 57 233/ 59 74/ 39 0/ 0 0 62,160 Single Op Assisted High Power K1RG 108/55 351/ 78 711/104 1117/ 97 297/ 85 33/ 9 1334 548 W2UP 31/30 237/ 57 368/ 69 845/ 88 154/ 64 2/ 2 1,552,744 W2UP 31/30 237/ 57 368/ 69 845/ 88 154/ 64 2/ 2 1,552,744 W12X 42/22 210/ 66 238/ 82 238/ 85 166/ 27 7 2,155,777 K2CA 71/48 268/ 71 347/ 79 320/ 82 111/ 64 0/ 0 0 1,112,589 W12X 14/13 50/ 32 126/ 47 155/ 73 63/ 46 0/ 0 229,157 W12B W2XX 0/ 0 0/ 0 38/ 28 96/ 48 83/ 45 1/ 1 79,788 W11A HITM WID WILL WIL			65/ 3	2 216/ 54	70/ 37	2/ 1	158,625		
Name			722/7	9 1200/ 05	240/65	9/ 1	3 300 000	K1AE	
NJZL								W1TA	
NIAM									
Name									
Single Op Low Power R3SG									
NTIO 16/15 134/ 44 189/ 48 424/ 66 117/ 50 4/ 2 596,700 KIVUT 18/16 155/ 46 180/ 61 349/ 62 96/ 46 5/ 1 558,888 KIVW 68/36 84/ 39 351/ 60 260/ 52 56/ 29 1/ 1 530,565 KIRW 68/36 84/ 39 351/ 60 260/ 52 56/ 29 1/ 1 530,565 KIRW 68/36 84/ 39 351/ 60 260/ 52 56/ 29 1/ 1 530,565 KIRW 68/36 84/ 39 351/ 60 260/ 52 56/ 29 1/ 1 530,565 KIRW 68/36 84/ 39 351/ 30 70/ 37 30/ 22 0/ 0 62,160 KIRW	Single Op	Low Power							
KIVUT									
KIVW 68/36 84/ 39 351/ 60 260/ 52 56/ 29 1/ 1 530,565 M1ZZ 15/14 77/ 37 160/ 57 233/ 59 74/ 39 0/ 0 345,462 M1EQ 0/ 0 50/ 30 75/ 35 257/ 62 98/ 43 1/ 1 246,753 M1ZZ KIZZ KIRO NIRL KIRP 0/ 0 34/ 23 51/ 30 70/ 37 30/ 22 0/ 0 62,160 M1ZZ KIZZ KIRO NIRL KIRY KIRP KIRP 0/ 0 34/ 23 51/ 30 70/ 37 30/ 22 0/ 0 62,160 M1ZZ KIZZ KIRO NIRL KIRY KI								KCIAA	
W1EQ	K1VW	68/36 84/ 39		0 260/ 52	56/ 29	1/ 1	530,565	K1AR	
Single Op Assisted, High Power Rink Ri							·	_	~
Single Op Assisted. High Power RING 108/55 351 78 711/04 1117 97 297/ 85 13/ 9 3,334,548 K3WW 83/51 364 79 662/ 95 1116/ 93 193/ 73 5/ 4 2,871,255 K2WK 70/45 160/ 61 290/ 81 1100/ 91 157/ 63 3/ 3 1,835,928 W2UP 31/30 237/ 57 368/ 69 845/ 81 154/ 64 2/ 2 1,552,410 N2TX 42/32 210/ 66 258/ 82 538/ 85 116/ 62 7/ 2 1,155,777 K2XA 71/48 268/ 71 347/ 79 320/ 82 111/ 64 0/ 0 1,112,859 N1CC 5/ 5 63/ 38 90/ 55 273/ 76 70/ 45 0/ 0 329,157 Single Op Assisted, Low Power AA2GS 14/13 50/ 32 126/ 47 155/ 73 63/ 46 0/ 0 258,264 W2XX 0/ 0 0/ 0 38/ 28 96/ 48 83/ 45 1/ 1 79,788 W1FJ W92EQ N3BGN 87/55 473/ 79 804/ 97 1237/104 191/ 75 8/ 3 3,469,200 M2ITA 40/31 154/ 56 399/ 80 923/ 84 92/ 55 0/ 0 1,471,554 N1AU M2EQ M2IX 129/60 852/ 94 1002/112 1739/104 441/ 92 15/ 9 5,899,275 K1RX 85/48 408/ 75 780/ 91 1346/ 98 187/ 73 7/ 2 3,263,571 KB1H 54/32 235/ 70 356/ 80 1096/ 92 182/ 67 4/ 4 1,993,410 M1EF K1ET K1ET K1CA K1FW K1BG K1BH K1EBY K1BH									
K1NG	Single Or	Assisted. High Po	ower						
RZMK	K1NG	108/55 351/ 78	711/10					TCINI	
Mark								KB1H	KB1H K1EBY
RZXA T1/48 268 / 71 347 / 79 320 / 82 111 / 64 0 / 0 1,152,744 K20NP 45/34 218 / 67 340 / 76 589 / 79 57 / 41 0 / 0 0 1,152,744 K1CC K1KI K1PI K2KQ KM1P NQ1K M1RI M2EQ M1VE K1KI K1CC K1KI K1PI K2KQ KM1P NQ1K M1RI M2EQ M1VE K1KI K1CC K1KI K1PI K2KQ KM1P NQ1K M1RI M2EQ M1VE K1KI K1CC K1KI K1PI K2KQ KM1P NQ1K M1RI M2EQ M1VE K1KI K1CC K1KI K1PI K2KQ KM1P NQ1K M1RI M2EQ M1VE K1EV M1FJ M2EQ M1VE M1VE K1EV M1FJ M2EQ M1VE M1VE K1EV M1FJ M2EQ M1VE M1VE M1FJ M2EQ M2EQ M1FJ M2EQ					154/ 64	2/ 2			
K2ONP 45/34 218/ 67 340/ 76 589/ 79 57/ 41 0/ 0 1,112,859 N1CC 5/ 5 63/ 38 90/ 55 273/ 76 70/ 45 0/ 0 329,157 K1KI K1CC K1KI K1PI K2KQ KM1P NQ1K W1RM W2EQ W2XX 0/ 0 0/ 0 38/ 28 96/ 48 83/ 45 1/ 1 79,788 W1VE K1BW N1BB W1FX W1VE K1BW N1BB W1FX W1VE K1BW N1BB W1FX W1VE W1VE K1BW N1BB W1FX W1									
N1CC 5/ 5 63/ 38 90/ 55 273/ 76 70/ 45 0/ 0 329,157 Single Op Assisted, Low Power AA2GS 14/13 50/ 32 126/ 47 155/ 73 63/ 46 0/ 0 258,264 W2XX 0/ 0 0/ 0 38/ 28 96/ 48 83/ 45 1/ 1 79,788 Multi-Single W3BGN 87/55 473/ 79 804/ 97 1237/104 191/ 75 8/ 3 3,469,200 N3DL 28/24 264/ 71 492/ 81 774/ 80 112/ 49 0/ 0 1,523,475 W1TA 40/31 154/ 56 399/ 80 923/ 84 92/ 55 0/ 0 1,471,554 Multi-Two KCIXX 129/60 852/ 94 1002/112 1739/104 441/ 92 15/ 9 5,899,275 K1RX 85/48 408/ 75 780/ 91 1346/ 98 187/ 73 7/ 2 3,263,571 KB1H 54/32 235/ 70 356/ 80 1096/ 92 182/ 67 4/ 4 1,993,410 Multi-Multi W3LPL 262/68 1053/ 96 1172/119 1758/120 513/ 97 32/ 12 7,326,720 N2RM 226/73 912/ 89 1327/116 1672/112 625/100 16/ 8 7,117,416 N3RS 174/62 807/ 93 1164/116 1859/113 402/ 97 17/ 6 6,457,620 K1KI ALCC KRIT RIFI KACC KRIT AT P KIC RIT RIFI KACC KRIT AT P KIRI RIFI KACC KRIT ATP KIC RIT AT RIFI KACC KRIT ATP KIT ACC RIT RIFI KACC KRIT ATP KIRI AT C. WIVE WIVE KBIW N1BB WILL AL92 KIGW SIM WILL AL92 NIAU KIGW RIAT NIAU KIGW ALMY NICS K2ZZ WIQK KITI KITI KITR KICA KIFT KACC RITI KIC ART RIFI KACC R									
Single Op Assisted, Low Power	N1CC	5/ 5 63/ 38	90/5	5 273/ 76	70/ 45	0/ 0	329,157	KIKI	
W2XX 0 / 0 0 / 0 38 / 28 96 / 48 83 / 45 1 / 1 79,788 W1FJ WG9L NS1M W1IX NU1P WA1ZAM W1IX A 40/31 154 / 56 399 / 80 923 / 84 92 / 55 0 / 0 1,471,554 KIGW 1GW K1ART W6PH N1AU K1HQ WC1D N1DS N1AU K1HQ WC1D N1DS N1AU W1QK AA1MY N1GS K2ZZ W1QK Multi-Two KC1XX 129 / 60 852 / 94 1002 / 112 1739 / 104 441 / 92 15 / 9 5,899,275 K1RX 85 / 48 408 / 75 780 / 91 1346 / 98 187 / 73 7 / 2 3,263,571 KB1H 54 / 32 235 / 70 356 / 80 1096 / 92 182 / 67 4 / 4 1,993,410 W1QK W1T K1TI K1TR K1CA K1TI K1TR K1CA K1FWE K1BG Multi-Multi W3LPL 262 / 68 1053 / 96 1172 / 119 1758 / 120 513 / 97 32 / 12 7,326,720 N2RM 226 / 73 912 / 89 1327 / 116 1672 / 112 625 / 100 16 / 8 7,117 / 416 N3RS 174 / 62 807 / 93 1164 / 116 1859 / 113 402 / 97 17 / 6 6,457,620 K1KI 242 / 65 818 / 94 1124 / 114 1689 / 112 336 / 90 16 / 8 6,101,739 K3LR 171 / 64 757 / 94 987 / 123 1624 / 114 414 / 92 26 / 15 5,990,868 W1VE 127 / 54 700 / 84 951 / 103 1574 / 103 379 / 90 15 / 9 4,965,144	Single Op	Assisted, Low Po	<u>wer</u>						
Multi-Single W3BGN 87/55 473/ 79 804/ 97 1237/104 191/ 75 8/ 3 3,469,200 N3DL 28/24 264/ 71 492/ 81 774/ 80 112/ 49 0/ 0 1,523,475 W1IA 40/31 154/ 56 399/ 80 923/ 84 92/ 55 0/ 0 1,471,554 Multi-Two KC1XX 129/60 852/ 94 1002/112 1739/104 441/ 92 15/ 9 5,899,275 K1RX 85/48 408/ 75 780/ 91 1346/ 98 187/ 73 7/ 2 3,263,571 KB1H 54/32 235/ 70 356/ 80 1096/ 92 182/ 67 4/ 4 1,993,410 Multi-Multi W3LPL 262/68 1053/ 96 1172/119 1758/120 513/ 97 32/ 12 7,326,720 N2RM 226/73 912/ 89 1327/116 1672/112 625/100 16/ 8 7,117,416 N3RS 174/62 807/ 93 1164/116 1859/113 402/ 97 17/ 6 6,457,620 K1KI 242/65 818/ 94 1124/114 1689/112 336/ 90 16/ 8 6,101,739 K3LR 171/64 757/ 94 987/123 1624/114 414/ 92 26/ 15 5,990,868 WIVE 127/54 700/ 84 951/103 1574/103 379/ 90 15/ 9 4,965,144								W1VE	
W3BGN 87/55 473 79 804 97 1237 104 191 75 8 3 3,469,200 N3DL 28/24 264 71 492 81 774 80 112 49 0 0 1,523,475 N1AU K1HQ WC1D N1DS W1IA 40/31 154 56 399 80 923 84 92 55 0 0 1,471,554 N1AU K1HQ WC1D N1DS N1AU W1QK AA1MY N1GS K2ZZ K1RX 85/48 408 75 780 91 1346 98 187 73 7 2 3,263,571 K1RX 85/48 408 75 780 91 1346 98 187 73 7 2 3,263,571 K1RI K1TI K1TI K1TR K1CA K1HQ W1QK K1HQ W1QK K1HQ W1QK			30/ 2	0 90/40	03/ 43	1/ 1	79,700		
N3DL 28/24 264/ 71 492/ 81 774/ 80 112/ 49 0/ 0 1,523,475 W1IA 40/31 154/ 56 399/ 80 923/ 84 92/ 55 0/ 0 1,471,554 MUlti-Two KClxx 129/60 852/ 94 1002/112 1739/104 441/ 92 15/ 9 5,899,275 K1RX 85/48 408/ 75 780/ 91 1346/ 98 187/ 73 7/ 2 3,263,571 KB1H 54/32 235/ 70 356/ 80 1096/ 92 182/ 67 4/ 4 1,993,410 MUlti-Multi W3LPL 262/68 1053/ 96 1172/119 1758/120 513/ 97 32/ 12 7,326,720 N2RM 226/73 912/ 89 1327/116 1672/112 625/100 16/ 8 7,117,416 N3RS 174/62 807/ 93 1164/116 1859/113 402/ 97 17/ 6 6,457,620 K1KI 242/65 818/ 94 1124/114 1689/112 336/ 90 16/ 8 6,101,739 K3LR 171/64 757/ 94 987/123 1624/114 414/ 92 26/ 15 5,990,868 W1VE 127/54 700/ 84 951/103 1574/103 379/ 90 15/ 9 4,965,144			804/ 9	7 1237/104	191/ 75	8/3	3 469 200	K1GW	
Multi-Two KClxx 129/60 852/ 94 1002/112 1739/104 441/ 92 15/ 9 5,899,275 K1RX 85/48 408/ 75 780/ 91 1346/ 98 187/ 73 7/ 2 3,263,571 KB1H 54/32 235/ 70 356/ 80 1096/ 92 182/ 67 4/ 4 1,993,410 Multi-Multi W3LPL 262/68 1053/ 96 1172/119 1758/120 513/ 97 32/ 12 7,326,720 N2RM 226/73 912/ 89 1327/116 1672/112 625/100 16/ 8 7,117,416 N3RS 174/62 807/ 93 1164/116 1859/113 402/ 97 17/ 6 6,457,620 K1KI 242/65 818/ 94 1124/114 1689/112 336/ 90 16/ 8 6,101,739 K3LR 171/64 757/ 94 987/123 1624/114 414/ 92 26/ 15 5,990,868 W1VE 127/54 700/ 84 951/103 1574/103 379/ 90 15/ 9 4,965,144									
Note	W1IA	40/31 154/ 56	399/ 8	0 923/84	92/ 55	0/ 0	1,471,554		
K1RX 85/48 408/ 75 780/ 91 1346/ 98 187/ 73 7/ 2 3,263,571 KB1H 54/32 235/ 70 356/ 80 1096/ 92 182/ 67 4/ 4 1,993,410 Multi-Multi W3LPL 262/68 1053/ 96 1172/119 1758/120 513/ 97 32/ 12 7,326,720 N2RM 226/73 912/ 89 1327/116 1672/112 625/100 16/ 8 7,117,416 N3RS 174/62 807/ 93 1164/116 1859/113 402/ 97 17/ 6 6,457,620 K1KI 242/65 818/ 94 1124/114 1689/112 336/ 90 16/ 8 6,101,739 K3LR 171/64 757/ 94 987/123 1624/114 414/ 92 26/ 15 5,990,868 W1VE 127/54 700/ 84 951/103 1574/103 379/ 90 15/ 9 4,965,144								WlQK	
KB1H 54/32 235/70 356/80 1096/92 182/67 4/4 1,993,410 K1FWE K1BG Multi-Multi W3LPL 262/68 1053/96 1172/119 1758/120 513/97 32/12 7,326,720 N2RM 226/73 912/89 1327/116 1672/112 625/100 16/8 7,117,416 N3RS 174/62 807/93 1164/116 1859/113 402/97 17/6 6,457,620 K1KI 242/65 818/94 1124/114 1689/112 336/90 16/8 6,101,739 K3LR 171/64 757/94 987/123 1624/114 414/92 26/15 5,990,868 W1VE 127/54 700/84 951/103 1574/103 379/90 15/9 4,965,144								K1TI	
W3LPL 262/68 1053/ 96 1172/119 1758/120 513/ 97 32/ 12 7,326,720 N2RM 226/73 912/ 89 1327/116 1672/112 625/100 16/ 8 7,117,416 N3RS 174/62 807/ 93 1164/116 1859/113 402/ 97 17/ 6 6,457,620 K1KI 242/65 818/ 94 1124/114 1689/112 336/ 90 16/ 8 6,101,739 K3LR 171/64 757/ 94 987/123 1624/114 414/ 92 26/ 15 5,990,868 W1VE 127/54 700/ 84 951/103 1574/103 379/ 90 15/ 9 4,965,144									
W3LPL 262/68 1053/ 96 1172/119 1758/120 513/ 97 32/ 12 7,326,720 N2RM 226/73 912/ 89 1327/116 1672/112 625/100 16/ 8 7,117,416 N3RS 174/62 807/ 93 1164/116 1859/113 402/ 97 17/ 6 6,457,620 K1KI 242/65 818/ 94 1124/114 1689/112 336/ 90 16/ 8 6,101,739 K3LR 171/64 757/ 94 987/123 1624/114 414/ 92 26/ 15 5,990,868 W1VE 127/54 700/ 84 951/103 1574/103 379/ 90 15/ 9 4,965,144	Multi-Mul	ti							
N3RS 174/62 807/ 93 1164/116 1859/113 402/ 97 17/ 6 6,457,620 K1KI 242/65 818/ 94 1124/114 1689/112 336/ 90 16/ 8 6,101,739 K3LR 171/64 757/ 94 987/123 1624/114 414/ 92 26/ 15 5,990,868 WIVE 127/54 700/ 84 951/103 1574/103 379/ 90 15/ 9 4,965,144	W3LPL	262/68 1053/ 96							
K1KI 242/65 818/94 1124/114 1689/112 336/90 16/8 6,101,739 K3LR 171/64 757/94 987/123 1624/114 414/92 26/15 5,990,868 WIVE 127/54 700/84 951/103 1574/103 379/90 15/9 4,965,144									
WIVE 127/54 700/ 84 951/103 1574/103 379/ 90 15/ 9 4,965,144	K1KI	242/65 818/ 94	1124/11	4 1689/112	336/ 90	16/ 8	6,101,739		
·									
		121/34 /00/ 84	931/1U	J 13/1/103	313/ 30	13/ 9	-,,,00,,144	I	7

April 1997 _____ page 7

ARRL DX Phone Claimed Scores

Dave Hoaglin, K1HT YCCC Scores in BOLD

(Other NE USA scores from the Contest Reflector - thanks to WA4ZXA)

YCCC total from CW: 87.8 million						
Phone: 55.2 million						
YCCC Total	⇒ 143 Million!!					
FRC Claimed T	FRC Claimed Total ⇒144 Million					
lt'	It's awful close!!					

CALL	SCORE	Q	С
Single Op QRP			
N1AFC	112,014	295	
K2PS	103,044	277	
N1TM	76,935	223	115
Single Op High Pov	<u>wer</u>		
PJ9JT	2,678,580	3235	276
K5ZD (W2SC)	2,284,848	2214	344
N6BV	1,694,628	1989	
K3ZO	1,544,103	1733	
K4AB	1,208,004	1379	
AA1ON	1,062,864	1342	
KS1L	809,160	1226	
W1WEF	512,652	718	
AA4NC (KS4XG)	426,492	718	
NZ1Q	247,530	446	
KD1YN	243,408	461	
K5MA	241,605	455	
KA1DWX W1RY	230,895 230,184	435 417	177 184
W1OJ	205,500	500	
W1VT	194,460	463	
K1EFI	180,600	430	
W2GDJ	126,888	311	
KK1L	117,504	295	136
K8BK	102,600	285	
K1NYK	89,262	261	114
K1BV	63,360	240	88
K1TH	58,656	208	94
W8PT	16,146	78	69
K1SD	15,453	101	51
Single Op Low Pov	<u>/er</u>		
VP2V/K1DW	496,470	1273	130
NA2U	290,265	523	185
AA2GS	258,264	408	211
K1NO (K5FUV)	170,316		
K1VSJ	167,634	417	
N1PGA	149,628	337	
K1HT	142,749	311	
W1ZZ	116,946	268	
W1TE	116,352	303	
KD2TT	114,681		127
N1RT	100,188	253	
N1RJF W3CP	58,092 35,904	206 136	94 88
NOCE	33,704	130	50

W4ZW W1OHM K1OA WU1F N1SMB N2RMZ AB1U	34,419 32,319 30,960 23,520 19,080 17,568 855	149 133 129 112 106 96 19	77 81 80 70 61
Single Op Assisted K1ZM W1MD KE3Q K3WW AA1K N4ZC N8TR K1AM K1MY AA3B W1RZF K2TE K3AR N3ZA	1,830,000 1,754,772 1,658,580 1,562,880 1,505,898 983,547 746,415 746,334 700,416 675,360 628,224 517,032 492,288	1732 1678 1551 1480 1422 1061 874 813 1024 804 804 818 668 641 589	349 359 352 353 309 285 306 228 280 256 258 256
N1CC AA1V K1MO N1DG N1NQD K3IXD W2UP K3KO N1SP KB2HUN KF2O K2EP	454,119 444,108 353,439 330,084 306,234 230,280 214,230 213,840 203,904 201,453 179,712 159,705 149,730	622 519 519 477 380 370 440	238 227 212 214 202 193 162 177 181
W1JCC KD1NE K1RM N2UN K1VV K1EU N1RR Single Op Assisted AA2GS	141,588 125,730 77,814 61,311 45,045 19,494 12,700	276 330 262 191 165 114	91 57
WO1N K1RV Single Band 20 METERS WF1L (LP)	16,632 62,784 58,275	88 192 259	
15 METERS WA2QNW WA1FCN (LP)	44,712 21,450	216 143	
Multi-Single KY2J WA2VUY N8NR AJ1I (@KB1HY) N2SA K3MD W1BK WR1X N2LBR	1,432,782 1,198,224 719,901 551,661 538,098 469,404 326,616 265,950 217,743	1414 1265 822 803 683 666 439 450	318 293 229 263 236 248 197

	<u> </u>				The	YCCC Scuttle
Model Torre				AA3JU	1,064,574	1216 294
<u>Multi-Two</u>				K2KV	836,304	1054 266
KC1XX	3,924,000	3003		W1QK	667,233	833 267
V2PV	3,120,000	2624				
N2NT	2,936,500	2289	428	<u>Multi-Multi</u>		
K1NG	2,940,690	2362	415	W3LPL	5,069,670	3485 487
13RS	2,900,520	2305	420	K1KI	4,333,659	3203 451
V1FJ	2,794,302	2317	402	K3LR	4,007,568	2883 464
W2XX (@KE2NL	2,791,308	2468	377	W3EA	1,928,070	1740 370
K1ZD	1,956,768	1744	374	N1TU	1,862,580	1678 370
K8AZ	1,800,000	1692	364	K3EST	1,543,122	2002 259
K1RX	1,385,100	1350		K3ANS	1,317,528	1265 348
K8LX	1,353,024	1394		K3II	1,299,000	1323 328
KV1W	1,351,080	1390		K1KP	1,062,936	1197 296
KB1SO	1,317,600	1525		N1AU	868,185	981 295
KB1H	1,301,157	1287		K1GW	411,930	690 199
W3PP	1,151,955	1219				

Band Bre	akdow	<u>/ns</u> 80	40	20	15	10	SCORES
Single Op O N1AFC K2PS N1TM	QRP 0/ 0 0/ 0 3/ 3	0/ 0 9/ 8 11/ 10	41/ 23 18/ 16 25/ 20	160/ 62 157/ 60 109/ 46	86/ 38 87/ 36 61/ 31	8/ 4 6/ 4 14/ 5	112,014 103,044 76,935
Single Op I K5ZD K3ZO	High Po 45/29 21/18	wer 253/ 64 151/ 52		1466/114 1175/105	127/ 55 156/ 53	35/ 10 22/ 8	2,284,848 1,544,103
Single Op I	3/ 3 0/ 0	<u>wer</u> 22/ 19 9/ 8	69/ 40 41/ 27	276/ 72 140/ 64	121/ 44 69/ 43	32/ 7 9/ 4	290,265 116,946
Single Op I W1MD KE3Q K3WW AA1K N3RR K1AM AA3B K3AR N3ZA N1CC W2UP	41/30 34/26 43/35 52/37 31/25 34/30 14/14 8/8 16/15 19/16 2/2	wer Assi 213/ 61 95/ 51 126/ 58 77/ 50 86/ 48 80/ 47 100/ 49 37/ 32 55/ 39 35/ 27 66/ 33		1063/112 836/108 926/107 905/105 521/ 93 403/ 95 344/ 85 316/ 89 282/ 85 344/ 88 229/ 56	212/ 80 279/ 83 214/ 77 179/ 77 251/ 74 143/ 63 190/ 69 169/ 66 142/ 62 143/ 57 64/ 35	49/ 12 92/ 19 38/ 12 28/ 14 73/ 20 39/ 12 51/ 12 40/ 14 62/ 9 26/ 12 34/ 8	1,754,772 1,658,580 1,562,880 1,505,898 1,054,272 746,334 675,360 492,288 454,119 444,108 213,840
WA2VUY AJ1I N2SA WR1X	30/21 34/24 16/14 0/ 0	109/ 55 63/ 41 75/ 48 46/ 34	150/ 61 81/ 44 118/ 57 58/ 36	745/100 536/ 75 329/ 86 221/ 72	198/ 71 76/ 35 125/ 49 118/ 48	33/ 10 15/ 10 20/ 0 8/ 7	1,198,224 551,661 538,098 265,950
Multi-Two KC1XX N2NT N3RS W1FJ W2XX KV1W KB1SO KB1H W3PP	54/35 83/42 56/37 64/37 44/33 31/23 6/5 33/28 25/20	370/ 75 206/ 65 245/ 66 371/ 77 247/ 66 202/ 61 108/ 46 100/ 56	310/ 85 367/ 85 245/ 73 303/ 73 165/ 63		412/ 96 337/ 93 440/ 94 346/ 89 268/ 73 213/ 68 144/ 66 218/ 77 213/ 71	63/ 17 96/ 21 89/ 23 58/ 14 59/ 14 63/ 15 11/ 5 59/ 14 26/ 9	3,924,000 2,936,500 2,900,520 2,794,302 2,791,308 1,351,080 1,317,600 1,301,157 1,151,955
Multi-Multi W3LPL K1KI K3LR W3EA K3EST K3ANS	80/44 88/44 55/32 45/33 24/14 43/31	437/ 88 375/ 79 351/ 86 147/ 59 150/ 39 168/ 59	489/ 96 409/ 85 469/ 94 201/ 67 567/ 56 175/ 68		451/ 99 379/ 93 352/ 95 301/ 86 408/ 50 244/ 77	125/ 26 126/ 17 92/ 19 78/ 18 2/ 0 72/ 16	5,069,670 4,333,659 4,013,136 1,928,070 1,543,122 1,317,528

<u>Multi (</u>	<u>Operators</u>
Call	0ps
Multi-Si	inale
N2LBR	N2LBR WA1KKM
WR1X	TID 1 II TID 1 DO
	WRIX KEIFO N1IPG W1PF W1NP AT2E
W1BK	W1BK W1NR AI3E
	N1TXH
AJ1I	KB1HY KB1GW N1JBH N1RL
	N1JBH N1RL
Multi-T	<u>wo</u>
W1QK	AA1MY N1GS W1QK
	K2ZZ
KB1H	KB1H AA1CE
	K1EBY W3TB KB1SO K1ZR
KB1SO	KBISO KIZR
K1NG	K1NG KI1G K1VR
KV1W	AA1AA K1SD
KVIW	KV1W W1CSM N6RFM
K1RX	
KIKA	K1RX KF1V K1OZ N1SD K1EPJ
K1ZD	K1RO K1ZZ N1RR
	KA1ZD
W2XX	W2XX N2TX W2SF
	KE2NL
W1FJ	W1FJ N1BB K1XM
	W1KM WA1QGC NB1B
W2PV	K2TR K2XA KD2RD
	K2XW NQ1F K2ONP
KC1XX	KC1XX KM3T KC1F
	K1LZ K5ZD
<u>Multi-M</u>	ulti
K1GW	K1GW W6PH
N1AU	AA1IZ K1EP NY1L
112110	W1RV N1AU
K1KP	K1KP K1OA KB2R
	WA1S
N1TU	WT2Q KB1W W1VE
	WA1ZAM N1NYD
	K2WR NU1P K1TTT
	AA10K
K1KI	K1CC K1KI K1PI
	KM1P KQ2M NQ1K

The Open Logger Project David Robbins, K1TTT

Tt started like this:

Date: Sun, 03 Nov 1996 12:27:35 +0000 From: ky1h@BERKSHIRE.NET (David Rob-

bins)

To: cq-contest@tgv.com

I have a dream.... a logging program that is extendible, user configurable, and is supported across various platforms....

Not another logging program!' you may say. Yes, another logging program. But this one is a bit different, not only in how it will work, but mostly in how it is being designed. It is not starting out as a personal project that happens to grow into a commercial product. This program is being designed from the ground up to use state of the art technology. It is also being run as an open project where we welcome input and assistance from the potential user community. The design will be public domain, so anyone will be able to customize it or add to it's capabilities.

History

A step back in time is appropriate before we continue into the future. [flashback time!] In the beginning....[fade out to black and white picture of a TRS-80 Model I] Computer memory was small, the programming languages were simple, and the processors were slow. This meant that in order to do something in real time you had to write programs that were small and efficient. To do this many programs used a mix of assembly and basic languages. This satisfied the early needs of doing dupe checking and multiplier checking as you entered contacts.

Of course as the computers got faster and memory capabilities expanded [switch to grainy color shot of an original IBM PC, in the BIG case] the program writers started adding more features to use up those spare clock cycles and kilobytes of RAM. (As dictated by someone's law... 'Computer programs expand to consume all available memory and computer time') And of course since it was the same programmers that wrote the programs in the first place all they did was add more stuff to their existing programs. And with each bigger and faster computer [morph the PC to XT to AT to 386 to 486 to Pentium to Pentium Pro...] there was more and more added to each of the programs. And as many of us learned from the user side, some of these programs have reached the breaking point. That is, "the point where fixing one bug creates one or more seemingly unrelated bugs". ("It's not pointers that kill programs, its programmers with pointers that kill programs." I forget where I read that recently, but it seems to fit here.)

Also since these programs were designed mostly in the heads of one programmer there was no way for anyone else to step in and help when that person didn't have time or the inclination to add new features.[quick shot of programmer at computer pulling hair out as screen flashes ERROR] And of course if you had an idea for a nice new feature first you had to convince the owner of the program that you liked that it was a good idea. Then you had to wait and hope that how he thought it should work was close enough to your idea that you would still like it when it came out in the next version..... maybe.

Today's Loggers

Lets look at the current state of technology, and think for a bit about where it may be in a couple years. [rapid sequence of a Pentium, Mac, and Sun Workstation all running hi-res graphics demos on super size screens] A Pentium Pro running your coffee pot, Java based network computers selling used for \$20, dual fiber cables straight to your video-phone/computer

/tv/radio/entertainment center/home controller/web server/microwave oven that's built into your recliner armrest. Well, maybe that's a year or two too far into the future; lets try for something like late next year.[end flashback, return to reality]

Now many of the radios have more computer power than the early computers did(and some actually plug into your computer mother board), the desktop computers run faster than the mainframes used to, and network cards that are faster than the early Internet backbones are under \$20. And yet most contest loggers still run under MS-DOS, use serial ports for simulated local networks(if they network at all), and are tied to one computer type. Been there, done that.

Some advanced logging programs run under windows, and a few experimenters have written programs for Linux, Motif, Sun workstations, Macs, and other types of platforms. But most of them have a small user base and lack many of the features in the older programs. Plus they require more system resources than the DOS based ones.

A New Paradigm?

Lets break that mold and start fresh with a program that is:

1. Upgradeable with our hardware without re-writing.

- 2. Configurable for new contests or rule changes without re-writing.
- Be able to add new features without rewriting.
- 4. Able to leap tall networks in a single datagram.
- Runs on different platforms and under different operating systems.

Well, that may be nice, but what does it really mean? Note that the key phrase repeated in 1,2, 3, and 5 above is 'without re-writing'. This points to a modular design that allows the addition and replacement of components without changing the basic framework that lets the pieces communicate with each other. This is something that is hard or impossible with many older languages and operating systems. And the implementations of this in native code differs between operating systems, which requires at least rebuilding and at worst completely rewriting programs to run on different platforms. Java supports this directly, on any platform that it runs on. (see Sidebar: 'Java, WHY?')

I know many of us have been calling for real network support for contest logging for years. Using serial ports can be difficult due to their problems with RF. And just getting enough ports available to talk to radios, rotors, TNCs, and other computers can be a real problem. Network cards are about the same price (or cheaper in some cases) than serial ports, are generally less susceptible to RF, and are easier to connect and configure, and are coming built in or easily added to laptops frequently used on expeditions. As an added bonus they can be used directly from Java programs.

When can I buy it?

No, it won't be available for Dayton 1997. This project is so far in the early planning and high level design stages. I don't expect anything that really looks like a logging program to be available for at least a year. Some prototype code is available now but it is only some basic proof of concept work and testing out capabilities of Java. So far it looks encouraging and some of the prototype code is available on the WWW.

Java: WHY?

Sun Microsystems designed Java in such a way that programs written in it will run on any platform 'without re-writing'. This is done by hiding the details of how to talk to the hardware from the program in a set of predefined libraries. These libraries and the Java interpreter do have to be supplied for each target machine, but the programs that use them can be written once and then run on any of the supported platforms without even recompiling.

Consider this example: I wrote a propagation prediction tool for contests that ran under MS-DOS for years. Then I spent several months converting it to run under MS-Windows 3.x. It works OK under Windows-95, but by changing some stuff and re-building it I could make it faster and add some more of the new neat features.... and then have 3 different versions to support that all run on PC clones but with different operating systems. I have done some of the Win95 port and it is faster, but has other problems because I don't have 32 bit libraries for everything I need. But now someone want to run it on a Sun Workstation, or a Mac PC, or a PowerPC running Windows NT ARG!

I spent 1 week converting it from C/C++ to Java, now it can be run on all of those and more with the exact same user interface and *no rewriting* of code to change platforms.

The next generation of Java is something they are calling Java Beans. The documentation for Java Beans almost perfectly describes the modular design that will be needed for the OpenLogger. In fact some of the demo code that comes with the Beans Development Kit looks very much like some of my prototype code that is now on the OpenLogger web page.

So what do we need to do now? Well, I am looking at the over all design and the framework to tie it all together, and there are some on going discussions of the basic data design. But there are several areas that need more research:

1. The collection and organizing of features that are desired. The 'Wish List' so to speak. I think this is actually fairly important since if we miss a critical relationship needed in the data it could be much harder to add it later. Think of this as the 'Requirements Definition' part of theproject. While the object oriented approach we are taking makes adding things later easier it is still much better to get a full set of requirements earlier than later.

- 2. The design of the basic object components. Part of this means figuring out the basic types of information and what can be done with it. A while ago there was an effort to define a common log file format that may have some good information. Does anyone know the results of that effort? This also includes figuring out how to represent contest rules, generic hardware objects, describing geo-political entities(counties, states, countries, continents, zones, etc), etc.
- **3.** A database that supports saving the necessary objects. I have some implementation ideas based on a recent class I took on the POET Object Database system, but there is still lots of basic research and design that needs to be done in this area.
- 4. The definition of an interface that can be used on different platforms to control native code that actually talks to the hardware. This is for such things as sending CW via serial or parallel ports, talking to accessories via serial ports, controlling DVP or other sound devices, etc. For this it would be nice to have knowledge of various hardware platforms since Java doesn't support this type of interface it will take someone knowledgeable on each platform to essentially expand the Java libraries to fill this gap.
- **5. Internationalization.** The design and translation of user interface components that need to be customized in various languages. Again, this is something that Java (starting with JDK 1.1 anyway) supports directly. But coming up with all the different translations and organizing them so its not hard to add to them needs to be looked at.

And all that before we really get down to writing a lot of code!

For more information and to keep up with the current status check out the OpenLogger web site at:

http://www.berkshire.net/~robbins/logger

and the message board that KK5ZX is running at:

http://www.dtx.net/~foggie/wwwboard. □

The 'Butt-10 And 20 Years Ago Leonard Kay, KB2R

[With this issue, I am inaugurating a new column - a quick look back on our first 20 years. Hope you enjoy it - '2R]

April 1977 (Issue 1) - YCCC is formed on April 9th, with 75 charter members. The Scuttlebutt logo shows sinking ships NCCC, PVRC, FRC, and MM in YCCC's wake. K1ZM(P), W4SYL(VP), K1XX(S), K1RQF(AM) and WA1TAI(T) comprise the first slate of officers. Mondays at 7:30 ET on 3900 kHz is the club meeting place.

Initally there are 4 general meetings scheduled per year, and K1ZM points out even back then that making two meetings a year "should not be an unreasonable requirement for anyone genuinely interested in being a part of the club".

An unidentified quote presumably heard at an NCCC social gathering reads: "Yeah, you guys have all the big stations out there.... but how come you aren't winning club competition anymore?" Boy, things don't really change, do they? Think the club is too splintered now? No less than 14 Area Managers are listed in Butt #1!! Mass has 5 alone!

But enthusiasm is very high, and claimed scores for 1977 ARRL DX indicate that had YCCC existed in time, the combined club score would have been about 50 Million points, with W2PV taking top honors in both modes - 4.7M on CW and 6.9M on Phone.

April 1987 (Issue 68) - An article by K1GQ discusses the weighty subject of how - and if to deal with a friend you know is running way too much juice. K1XM and KQ1F are off again, this time to the West Carolines as KC6MX and KC6IF.

N1AU's *Captain's Cabin* talks at length about the ineffectiveness of the Area Manager system [where do I remember that recently?]. His suggestion is that perhaps the newfangled PacketCluster nodes could serve as focal points for Area events [wow, it's easy to forget how comparatively recent a development packet is, huh?].

K1DG gives a CAC report. Among the items: the FRC petition to move ARRL DX CW up by one week - to separate CW and SSB more - is approved, and the Awards Committee is considering a QRP category for Sweepstakes. K1AR has QSL cards for \$35/2000. □

April 1997

Secretary's Report

Charlotte Richardson, KQ1F

The February, 1997, meeting of the Yankee Clipper Contest Club was held on Sunday, February 2, 1997, at the Sturbridge Host Hotel in Sturbridge, Mass. Club president Tom, K1KI, called the meeting to order with introductions of the 114 members present and their guests. Tom then extended his thanks to all the club officers and volunteers, area managers, packet sysops, and W1 QSL BURO volunteers for 1996. Len, KB2R, had a new shipment of club jackets and shirts. Ric, KV1W, had callsign bages and took many orders for new badges for all the members who changed calls in recent weeks.

Tom announced several upcoming local meetings: February 8th in Hanover, MA, a joint meeting with Murphy's Marauders on February 11th in Wetherfield, CT, on March 8th in Scarboro, ME, tentatively on February 8th on Long Island, and a Contest University during the ARRL SSB contest on March 1st in West Mass. Contact your area manager for more information.

The club financial statement showed a balance of \$2525.52.

The club welcomed ten new members (see New Crew for details: Lynn Dee Benjamin, KE1CT, Ed Parish, K1EP, George Slater, N1GS, Laura A. Lyman, AA1PK, Scott Porter, N1SP, Edward W. Midura, KA1TFU, Bob Crews, K1VA, Ernie Popp, K2EP, James Noble, WA2MKJ, and Richard Serafine, K3UU.

Tom then asked for updates on Sasha, WK1O, and Bob, N1TZ, both of whom have been hospitalized recently. Several members were looking for additional ARRL contest operators for both modes; interested people should talk to their area managers. Tom then passed out some certificates: to John, K1AR, for first place YCCC in the 1996 ARRL DX Contest SSB, to Dean, N6BV, for first place YCCC in the 1996 ARRL DX Contest CW, and to Brian, NJ1F (operating from K1RQ), for first place YCCC in the 1995 SS SSB. Dean, N6BV, then read an article from the FRC newsletter by Charlie, K3WW, on optimizing scores in the ARRL DX Contests.

Tom announced that several club members were planning ARRL DX Contest DXpeditions: K2LE to P4, W2AX/MM

on the QEII (counts for QSO credit only, no multiplier), W1WEF and W1BIH at PJ9C, K1DW from VP2V, and K2WR from GJ.

Tom and club scorekeept Dave, K1HT, then presented the most current CQ WW club score information. There were 170 SSB logs submitted and 155 CW logs submitted. 120 members submitted logs for both modes, compared to 35 members last year. Club certificates will be presented to members who made at least 300 OSOs on a mode, and club mugs (not vet arrived) will go to those who made at least 600 QSOs or 500K points on a mode. Similar certificates and mugs will go to members participating in the ARRL DX Contests, except that to reflect the differences in scoring, the mugs will go to those who contribute at least 600 OSOs or a score of 450K.

After the break and introductions of some late arrivials, Dean, N6BV, spoke about the history of our arch-rivals, the Frankford Radio Club, now celebrating their 70th year (this is our 20th year). We have never quite beaten them in the CQ WW, and have beaten them only twice in the ARRL DX Contests, and only once officially, during the administration of Bill, N1AU, as Club President, although they have been beaten by PVRC. For the past few years in the CQ WW contests, they have beaten us by 30% in 1990, by 15% in 1991, by 29% in 1992, by 45% in 1993, by 80% in 1994, by 28% in 1995, and 3% (projected) in 1996 (see graphs, next page). Clearly, we are wellpositioned to clobber them next year. FRC sends out many SSB DXpeditions, while YCCC is known as a CW club. Dean's conclusion is that FRC beats us in the CQ WW mainly due to their SSB DXpedition scores.

Now, what does this mean for the ARRL DX Contests under the new rules which count DXpedition scores? Looking at the historical data, they beat us by 50% in 1990, by 21% in 1991, by 19% in 1992, by 15% in 1993, by 55% in 1994, by 60% in 1995, and by 31% in 1996. Since then, we have a lot more new members with our active membership roll over three hundred, and lot more motivated people. Dean analyzed the probable effect of DXpeditions. Because of the small number of multipliers available for non-W/VE operators in these contests, you can only make about half the score for the same effort as you would for the CQ WW, even if you were able to work the same number of QSOs. The percentage is even smaller for very large multiops, again due to the relatively small number of multipliers available. Dean's conclusion is that DXpeditions are worth a lot less to the club in the ARRL contest. We should be able to win this year by a concentrated effort from our home stations.

Dean's strategies for improving scores: 1) Call CQ (you are louder into Europe than you think). 2) "Swarm" up the band in s&p mode, calling CQ on any clear frequency. 3) For rare multipliers, look at Dean's propagation charts and know when to look for the rare ones. 4) Operate with a friend or two (keeping in mind the 2/3 rule for ARRL club competition) as a two-transmitter multi, for more fun and more points. 5) Run your amp - it keeps the rate up. At least run it on all clean bands.

After the second break, Paul, K1XM, annoucned a Chinese New Year party the following Sunday at his QTH. Paul, KF2XK, has extra Dayton rooms available. Several members wanted to organize a Rom's run after the meeting.

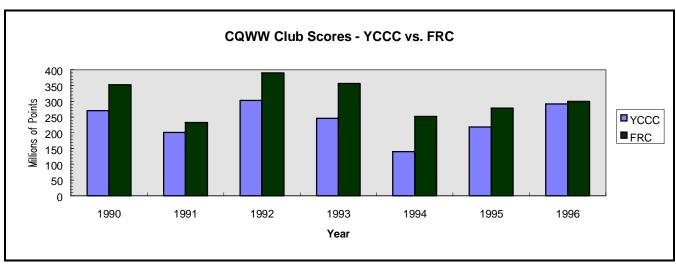
Kurt, W6PH (ex-W1PH), gave the ARRL Contest Advisory Committee update. Kurt is the New England Division representative. The most important actions this past year were the change to the tenminute rule for multi-single operations (to six band changes per clock hour) which becomes effective in 1998, and a proposal to change the 160m contest exchange to require DX stations to send their power level, which failed to pass. Now under consideration: a replacement for the Novice Roundup. The current proposal is for a one day 12 or 24 hour contest instead of the old two-week event. Another current agenda item is a proposal to add six meters to the ARRL DX contest in the future to attract Technician-class licensees. Kurt noted that you can email the CAC at cac@arrl.org.

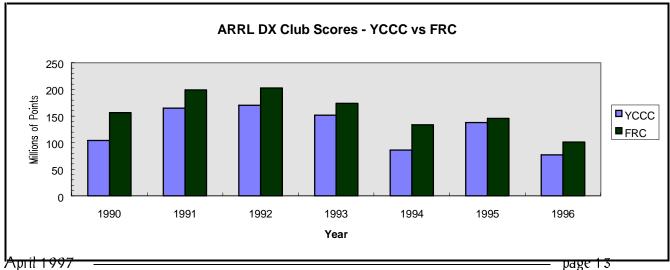
Rich, K2WR, the Hudson Division CAC representative, then gave some additional details. Rich replaced JP, W2XX, who also chaired the committee, which is now chaired by Tim Duffy, K3LR. Rich noted that the Membership Services Committee of the ARRL Board refers topics to the CAC for study. Also, the CAC can request permission to put items on its agenda. Rich noted that Frank, N2FF, the Hudson Division Director, sits on the Membership Services Committee. Rich said that the Directors, Vice Directors,

April 1997

CAC Representatives, and DXAC Representatives for both the New England and the Hudson Division are all YCCC members. If you have a topic for the CAC, see Rich, Kurt, or your Director or Vice Director.

Dean, N6BV, then presented questions for the CQ WW Contest Committee on behalf of Doug, K1DG, who was unable to attend the meeting. The hot topic concerns remote controlled stations, controlled remotely over telephone lines. The current rules only state the antennas must be within a 500 meter radius or on the onwer's property, whichever is larger. This subject generated much heated debate with opinions on both sides. Send your ideas to Doug k1dg@contesting.com. Doug is also collecting nominations for the CQ Hall of


Tom, K1KI, then discussed splitting up the club officers, to separate the Vice President and Activity Manager jobs. Tom noted that the Club constitution does not combine the Secretary and Treasurer positions anyway. The motivation to have more officers is to divide up the increasing workload, particularly since a club officer normally attends each regional meeting. Also, Tom would like to have one person focused only on programs for the central club meetings.


Tom then held the drawing for a weekend for two at the Yankee Clipper Inn in Rockport, Massachusetts, for members contributing 600 QSOs or 500K points in the CQ WW contests. Sixty members qualified for three chances by qualifying on both modes. Luigi, AA1AA, was the lucky winner.

Tom is looking for ideas for the club's 20th anniversary.

To end the meeting, Bill, N1AU, spoke about Everett, AJ1I, and his contributions to YCCC.

The meeting adjourned at 5 pm. \Box

Poop Deck

YCCC Elections!

Tom Frenaye, K1KI

The April YCCC meeting is when club officers are elected or reelected for the upcoming year. After consultation with the current group of officers, here is the slate of officers being proposed for the 1997-98 contest season:

PresidentR Dean Straw, N6BVVice PresidentTony Brock-Fisher, K1KP **Activities ManagerGlen Whitehouse, K1GW **SecretaryCharlotte Richardson, KQ1FTreasurerRic Plummer, KV1W

** These depend on your approval of the proposal to split the current Vice President/Activities Manager job into two parts.

If you'd like to hold club office and want one of these jobs, don't be shy about it, put your name in nomination at the April meeting. We all enjoy contests!

Len Kay, KB2R, says he will be happy to continue as the Scuttle-butt editor for the next year, and Mark Wilson, K1RO, has volunteered to be the YCCC Awards Manager. A large number of others help to run the YCCC - Area Managers, Packet Sysops, W1QSL Bureau volunteers, scorekeeper, badgemaker, apparel guru, webmaster, web programmers, QSL card maker...

New Area Manager

K1KI is pleased to announce that George Wilner, K2ONP, will be taking over as Area Manager in NNY (Albany area). Fred Lass, K2TR, is retiring as Area Manager after nine years in the job - and hopes to concentrate on making even bigger scores this year. □

More New and Old YCCC Callsigns

thanks to Tom, K1KI, and Len, KB2R

[updates from Gate 2... send corrections/additions to KB2R for next issue]

	KA1CB	is now	K1LD	AG7T	was	WT1T
	WT1T	is now	AG7T	K1LD	was	KA1CB
l	KV1P	is now	K10P	K10P	was	KV1P
	NA2M	is now	W2UD	K2XW	was	NQ2D
	NQ2D	is now	K2XW	N1NY	was	WW1O
	WW1O	is now	N1NY	N6HB	was	KA1XN
L	KA1XN	is now	N6HB	W2UD	was	NA2M

On the club scene.... Not to be outdone by YCCC, the Mad River Radio Club club callsign is now K8MAD, and the North Texas Contest Club is NT5CC.

The YCCC wants YOU -

- To be a volunteer.

See Tom's election article above.

Proposed change to the YCCC Constitution

Tom Frenaye, K1KI and Dean Straw, N6BV

YCCC has grown into a very big club during the past few years and we think it is important that the number of club officers be expanded. In the early days of the YCCC the Vice President and Activities Manager were two separate positions but they were consolidated at some point quite a few years ago. We hope you'll support this change at the April meeting!

Current wording

ARTICLE II

Sec. 1 - The officers of this club shall be: President, Vice President/Activities Manager, Secretary, and Treasurer.

Sec. 2 - The Vice President/Activities Manager shall assume all the duties of the President in the absence of the latter, and he shall plan meeting programs and similar activities.

ByLaw 4

ELECTIONS. Elections shall be scheduled pursuant to Article II of the Constitution. Nominations, properly seconded, shall be received by the President from the floor. Upon close of nominations, a secret ballot shall be conducted by the Secretary; this ballot shall be repeated, the nominee receiving the least votes being dropped from the ballot, until a nominee has received a majority of votes cast. This process shall be repeated until the offices of President, Vice President/Activities Manager, Secretary, and Treasurer are filled.

Proposed wording

Sec. 1 - The officers of this club shall be: President, Vice President, Activities Manager, Secretary, and Treasurer.

Sec. 2 - The Vice President shall assume all the duties of the President in the absence of the latter, and the Activities Manager shall plan meeting programs and similar activities.

ByLaw 4

ELECTIONS. Elections shall be scheduled pursuant to Article II of the Constitution. Nominations, properly seconded, shall be received by the President from the floor. Upon close of nominations, a secret ballot shall be conducted by the Secretary; this ballot shall be repeated, the nominee receiving the least votes being dropped from the ballot, until a nominee has received a majority of votes cast. This process shall be repeated until the offices of President, Vice President, Activities Manager, Secretary, and Treasurer are filled.

Poop Deck continued

New Crew

Please welcome the following new new and returning members who joined at the indicated meetings:

January 28 local meeting in Elmsford, NY:

Bob Stewart, W2SF 1743 Ashard Ken Lane Bay Shore, NY 11706 home phone: (516)666-6316 work phone: (516)376-4066 email: w2sf1@juno.com

February 2 general meeting at Sturbridge, MA:

Lynn Dee Benjamin, KE1CT 36 Merrill St. Springfield, VT 05156 home phone: (802)885-3099 email: lynndee@vermontel.com

Ed Parish, K1EP 9 Spoon Way North Reading, MA 01864 home phone: (508)664-1771 work phone: (508)446-6345 email: eparish@netcom.com

George Slater, N1GS 4 Richter Drive Danbury, CT 06811-3453 home phone: (203)798-9422 email: cqdx@worldnet.att.net

Laura A. Lyman, AA1PK 36 Merrill St. Spingfield, VT 05156 home phone: (802)885-3099 email: lynndee@vermontel.com

Scott Porter, N1SP RFD 1 Box 78A Fitzwilliam, NH 03447 home phone: (603)585-3330 email: wa1ytw@top.monad.net

Edward W. Midura, KA1TFU 528 Old Warren Rd. Palmer, MA 01069 home phone: (413)283-6625 work phone: (413)436-7704

Bob Crews, K1VA PO Box 577 Brookline, NH 03033 home phone: (603)672-8478 work phone: (603)884-3045 email: crews@niops.enet.dec.com

Ernie Popp, K2EP 640 Co. Rt. 7 Nassau, NY 12123 home phone: (518)477-9581 email: ka2htu@aol.com

James Noble, WA2MKJ 6 Hazel Terrace Renselaer, NY 12144 home phone: (516)286-3586 email: jimwa2mkj@juno.com

Richard Serafin, K3UU 35E Stony Brook Rd. Westford, MA 01886 home phone: (508)692-1434 work phone: (508)250-1110 email: k3uu@tiac.net

February 8 special meeting in Southeast Massachusetts:

Al Stewart, N1SMB 325 Ward St. Manchester, NH 03104 home phone: (603)622-4712 email: NONSMB@aol.com

Jeff Demers, N1SNB 287 Holt Ave. Manchester, NH 03109 home phone: (603)623-7312 email: Jdemers@sprynet.com

Ernie Guimares, Jr., KA1VY PO Box 1262 Lakeville, MA 02347 home phone: (508)947-4444

February 11th meeting with Murphy's Marauders in Weathersfield, CT:

Rich Cady, N1IXF 6 Grimes Brook Place Simsbury, CT 06070 home phone: (860)658-6147

Rick Casey, AB1U 8 Nancy Lane North Haven, CT 06473 home phone: (203)239-1466 email: AB1U@SNET.NET January 20 meeting at K1GW's in New Hampshire:

Randy Lake, N1KWF 73 Gunn Rd. Keene, NH 03431 home phone: (603)352-6990

home phone: (603)352-6990 work phone: (603)352-9122 email: RLake@monad.net

Jim Francis, K1PTF PO Box 1168 14 Old Coach Lane Amherst, NH 03031 home phone: (603)673-3737 work phone: (508)658-5600 x 5195

Dale Drake, AA1QD 513 Sixth St. Dover, NH 03820 home phone: (603)74

email: francis@agfa.com

home phone: (603)749-2512 work phone: (207)438-5729 email: aa1qd@aol.com

Doug Scribner, K1ZO 52 Manchester St. Keene, NH 03431

home phone: (603)352-5832 work phone: (603)352-7020 email: thecomshop@monad.net

Movers and Shakers

New address for **Gerry, W1VE** (ex-AK4L): Gerry Hull, W1VE PO Box C Greenfield, NH 03047 home phone: (603)547-2216 work phone: (603)547-8327

New Email for **Dave, K1NYK:** dmalley@pipeline.com

email: w1ve@inetmarket.com

Poop Deck continued

Proposed Guidelines for use of Club Callsigns

Glenn Swanson, KB1GW and Leonard Kay, KB2R

Thanks to the efforts of several people, YCCC has two great club call signs - AJ1I and W2PV - chosen in memory of two of our Silent Keys. Recently it has been discussed among the club staff that it might be a good idea to have a clear set of guidelines for using these calls.

Below is a proposal for these guidelines, to be added to the YCCC Bylaws. The proposed text is already the result of a week-long discussion on the YCCC Reflector. Please come to the meeting ready to discuss and vote. While it may seem overly wordy, the intent is to offer all YCCC'ers an equal opportunity to use the club calls.

NOTE: The proposed text below is in **bold**. Explanatory notes appear in (*italics*) and are not part of the text.

Bylaw #?? (TBD)

The following rules shall govern the use of the club callsigns W2PV and AJ1I.

I. Definition of terms.

- A) 'Big 6' contest: Any one of CQWW CW, CQWW SSB, ARRL DX CW, ARRL DX SSB, WPX CW, WPX SSB.
- B) 'Minor contest': Any contest other than a 'Big 6' contest.
- C) 'Contest year': The stretch of time which begins with CQWW SSB, and ends with WPX CW.
- D) 'Multi-operator group': A group of amateurs that worked a contest under a single callsign and submitted a valid log in a multi-operator category.
- E) 'Big gun' station: A multi-operator group that has submitted at least 1 valid log of 2.0 Meg points or greater, in any of the 'Big 6' contests of the previous contest year.
 - ('big gun' status is dependent only on operating results and must be renewed each year)
- F) 'Coordinator': The YCCC member responsible for processing the applications and granting the use of the club callsigns.

II. Rules for use of W2PV and AJ1I:

- A) Only 'Big gun' stations may apply for use of W2PV for use during a Big 6 contest.
- B) Any multi-operator group may apply for AJ1I for any contest, or for W2PV for a minor contest.
- C) A multi-operator group is ineligible for use of W2PV/AJ1I for a given contest if they used that call in that same contest in the previous year. (Can't hog the same call for the same contest 2 years in a row).

D) The trustees of the club callsigns are ultimately--and legally--responsible for their "proper" use. However, the representative requesting use of the call sign will be responsible, in the view of the club, for using the call sign within the bounds of FCC and contest rules. Misuse of a club callsign shall render a group ineligible for either call for one year.

III. How to apply:

- A) A request can be made by a representative of a multioperator group to the coordinator 3 months before the desired contest. The requests are handled first come, first serve.
- B) If the requesting multi-operator group meets the criteria in (II) above, and the call is still available, then the request must be granted.
- C) Once notified, the coordinator must respond to a written or verbal request within 7 calendar days.

1997 Massachusetts QSO Party Rules

Steve Olivieri, N1TYH

The 1997 Mass QSO Party is organized by the Framingham Amateur Radio Association.

Contest Period: 1800Z Sat May 3 to 0400Z Sun May 4 and 1100Z to 2100Z Sun May 4.

Classes: Outside MA, MA single op, MA multi op, MA portable, MA team (5 MA single ops), MA Nov/Tech, MA Club

Exchange: RS(T) and QTH (State/Province/DXCC Country/MA County)

Scoring: QSO: Count 1 point for Phone, 2 for CW/Digital/Video. Multipliers are MA counties (max 14 per band), plus States & Provinces & DXCC Countries per band for Massachusetts stations. Final score is total QSO points times total multipliers.

Frequencies: Any authorized amateur bands except 30, 17 and 12 meters.

Suggested frequencies: CW - 1810, 3550, 7050, 14050, 21050, 28050, 144.070, and 432.090 MHz. SSB - 1850, 3890, 7290, 14270, 21390, 28390, 144.220 (SSB), 146.550 (FM), 432.150 (SSB), and 446.000 (FM) MHz. Novices - 3705, 7130, 21130, 28130.

Awards: Certificates awarded for highest scores in each contest class, State, Canadian Province and DXCC Country and to entrants working all 14 MA counties.

Log Submission: Postmark entries by June 6th. Send logs to FARA, Box 3005, Framingham MA 01701, or electronically (ASCII or CT bin format only) to n1tyh@aol.com. For full copy of QSO Party rules send an SASE to above address, packet KA1USL@K1UGM, e-mail n1tyh@aol.com, or visit our website at http://www.ultranet.com/~fara.

Poop Deck continued

Meeting Minutes

Maine Meeting

Peter Archibald, N1AFC

A meeting of the Maine section was held on March 8, 1997. 14 people showed up. It was snowing. approx 3 inches. Fnally, some winter! Present were: KB1U, NY1E, K1EU, KA1PRD, N1RJ, K1MV, W1EL, K1RQ, W1OO, K1KI, K1OW, KA1T, NJ1F, N1AFC. We started with a film of the 3Y0PI DX-pedition. We then had a DX quiz, again won by Tom, K1KI. Tom gets to make up the next one. His name is once again added to the famous HOLA award.

We continued with discussions about the scores contributed to YCCC from the group, the club boundary, and contesting rules. We ate enough pizza to fill the best of them.

I thank everyone for coming. Our next meeting, we hope, will be in the summer. \Box

ENY Meeting

Hank Kiernan, KF2O

A Special Meeting was held on January 28, 1997, at Nat's Place in Elmsford, NY. The meeting was attended by members KF2O, WB2VVV, WR2I, W2XX, K8CH, K2WR, W1WEF, N6BV, W1XF, K2KQ, K5FUV, W2LK, and N2TX, and by visitors K2WE and W2SF. W2SF applied for membership and to no one's amazement was unanimously elected. W2SF formerly was KW2P, and Bob has been a DXer, contester and expeditioner...most recently to CYO last summer.

The informal topic of the night was "Bring your problems, we'll work on solutions". Several poor souls, including the author, were saved by the assembled masses! Several people also offered their "tricks of the trade". K5FUV then gave us all a rundown on the hot DX topics of the day, covering P5, BS7, A5, VU4 and several other most needed spots and the prospects for each. Bill feels it is highly likely there will be a major expedition to BS7 this spring. The other places are much more problematical. Rich Gelber then discussed CAC topics, especially the brewing discussion of multiple club entries by a single station.

Nat's Place served its usual fine fare, and the meeting was another success in getting members together informally and socially...esprit de corps to BEAT FRC!. □

Connecticut Meeting

Glenn Swanson, KB1GW

We had a nice gathering of Murphy's Marauders and YCCCers in Wethersfield, Connecticut on Tuesday evening, February 11, 1997.

We gained two new members of the YCCC and after they were "voted in," Tom, K1KI gave a short speech, imploring those in attendance to get on the air this weekend to whip the FRC. We talked about antenna's, who's planning what for the contest, and in general, had a pleasant time enjoying the company of our comrades in arms, otherwise known as radio contesters.

In attendance were: Tom K1KI, Dean N6BV, Glenn KB1GW, Vin K1RM, Mark K1RO, Chuck K8CH, Bill K5FUV, Pete W1RM, & YL: Bobbie, WB1ADL, Dick KB1H, Joel AK1N, Rick AB1U (joined at the meeting), John NQ1K, Rich N1IXF (joined at the meeting), Stan W1XK, Stan Jr. N1NEO, and Tom N1MM.

The sign-in sheet and two applications, along with dues paid, will be mailed to Charlotte. . \Box

E Mass Meeting

Tony Brock-Fisher, K1KP

The Hanover, Mass YCCC Local meeting was a great success! The following YCCC members were in attendance: K1KP K1VV K1RV K1TH AA1V W1KM WA1QGC K1SM K1AJ

In addition, the following 'new crew' joined YCCC and will be immediately eligible for the upcoming ARRL contests: Ernie KA1VY, Al N1SMB, and Jeff N1SNB Jeff and Al are already signed up to work at N1AU in the CW weekend - Thanks, Guys for helping Bill make the 2/3 quota!!

There was lively conversation as the Contester Sized Breakfasts were consumed - Many comments about how convenient it was to have a meeting in the SE Mass Area. . \square

W Mass Meeting

Bob Tublitz, WT2O

The following operators were present for the West Mass YCCC Contest University at the QTH of K1TTT: Ed WA1ZAM; Len KB1W; Rich K2WR; and Bob WT2Q, who are members, as well as K1TTT, NU1P, AA1OK,WB2VVQ, W2FK, and K2PQV. Tony, N1NYD and W1VE were operators for the contest but left prior to the Contest U. Tony also called me last night and expressed his delight in participating in the contest. I will send along to Charlotte those members who were at the Contest U, I also passed out application forms and copies of the Scuttlebutt for those who attended. □

PJ9 Perspective

Jack Schuster, W1WEF

It doesn't matter if you're in a contest or not; you sign your call a couple times and start a pileup. Of course you need a Classic 33 at 50 ft, an inverted L for 160 spaced 2 ft from the tower, a Delta loop off the tower on 40 with the bottom 5 ft off the ground, and a sloping dipole off the tower on 80 with the lower end tied off on an Organpipe cactus. A 900 ft beverage along the edge of the coral cliff 40 ft above the emerald waters, directed towards the West Coast of the US sure helps to hear well on 80 and 160.

In ARRL CW it's nice to be the only station active from Curacao. Once you find a frequency to sit on...not always easy among the CQing W's... you go back to the stations that call you 200 or 300 Hz higher in frequency than the rest of the pileup, because their signals really stand out while the others battle it out. You do copy the guy with good timing who drops his call just as the rest of the din subsides. His two letter suffix and short call seems to cut through best with a "K"," N", or "W" prefix. You can't believe how many stations have trouble sending their own call and how their prefix comes across as an unassigned letter combination. It's apparent that everyone isn't using computers and contest software with a W1WEF CW Interface!

When you're serious about winning, you can't stop to say hello to everyone who calls in, so you hope they understand why you just say TU after the exchange and go on to the next contact. You don't always sign your call, because you know there were others who called before and that they are waiting so you work four or five in a row at times before you sign PJ9C again. If you hear one "?", you sign

sooner, because you know the guy who works you without hearing your call will be a dupe, and there's a delicate tradeoff as to whether to chance the dupes in exchange for a higher rate or not. It's a real thrill to see the last ten Q rate go over 300, but no way can you sustain it for long. Over 240 on the last 100 is good too, but you're not really watching the rates continually so you don't know where you peaked. You can run a utility program that you've heard about, after the contest.

The dupes stay in the log, rather than say "dupe" and then hear the call or exchange repeated again anyway! It's really exaspirating when all you copy from a puny signal is a loud and clear "/QRP". You could have copied the call in the window when "/QRP" came through, but the puny guy comes back again and you again are only sure of the "/QRP" part. You don't really care if he's QRP although you know YOU don't have the patience to attempt that yourself. You never heard AA2U waste time signing "/QRP", but you can usually guess a station is QRP when you hear one. Under the right conditions at times however, the QRPer could say "/10KW", and you could believe it!

Your competition stops by during a lull, and asks how you're doing. Although you don't like doing this you exchange notes, but you don't know if he's trying to psych you out or not. Either way, if he's ahead of you, it makes you work harder, because it ain't over 'til it's over. If he's behind you, you know he'll work harder so you can't let your guard down and relax!

Before the contest, you studied past results, both your own and the competitions. You know where you were weak, and where you feel you have to improve, but you know you have no control over conditions so it may not be as easy as it

looks. You know you have to move some of the rare sections, but you again discover that although the station came back at the same 36WPM you were sending, when you ask him to "QSY 7055 NOW", he doesn't understand. In your excitement at having VY1JA come back to your CQ, you forget all about moving him and let him get away! You never expected to have propagation to him anyway this year.

You know you have to watch for a ten meter opening. Last year you worked 3 stations and two mults on ten, but you spent 30 minutes doing it! As a multisingle, you have to stay for ten minutes when you listen on another band, but next year that rule changes. You catch an opening at 2200Z the second day, and stay there for the rest of the contest. Although your rate might have been better on 20 where you might have equalled your 15M Q total had you stayed there, you did the right thing because you picked up 25 more multipliers. You watched the opening shift all over the USA, with signals from a whisper to S9+.

The contest is over and you feel good that you bettered last year's winning effort, and you may have even set a new M/S record. On 75M you find out that you beat the boys on Aruba, but you don't know if there were other M/S entries you should be concerned with. "It ain't over 'til it's over".

Thanks once again to my great friends, Mary and John Thompson, W1BIH (aka PJ9JT), for inviting me back for my ninth contest from Curacao. John and I split the operating time pretty evenly this year, and I can only hope that I'll still be enjoying contesting as much as him when I'm 82! □

YCCC CLUB RESOURCE INFORMATION

DUES AND MEMBERSHIP STUFF Dues (currently \$20) are payable as of the April election meeting, which begins our club "contest year", with a grace period until the end of June, at which time your membership lapses if dues are not paid up. In order to rejoin, a lapsed member must attend a meeting, like any new member, or may simply become a subscriber to the Scuttlebutt by paying up (see below). Club members who move out of club territory and so are not eligible to contribute to club aggregate scores automatically become subscribers. New members who join at the February meeting are credited with dues for the year beginning the following April. You can tell if you owe dues by checking your 'Butt mailing label. Only paid-up members are eligible to contribute to the club score in contests. **Mail your dues** to the club secretary, Charlotte Richardson, KQ1F, 11 Michigan Dr., Hudson, MA 01749. **FAMILY MEMBERS** Members of the same family living at the same address may elect to receive only one copy of the Scuttlebutt. One member of the family must pay full dues, enabling the rest of the family to join as family members, which is free. **STUDENT MEMBERS** Full-time students are eligible for dues at half the regular rate.

SCUTTLEBUTT SUBSCRIPTIONS Anyone may subscribe to the club newsletter, the *Scuttlebutt*. The subscription year begins in April. Subscribers who sign up between December and April are considered paid-up for the upcoming year. You can tell if your subscription is current by checking your 'Butt mailing label. The grace period for late subscriptions is the same as for late memberships.

SCUTTLEBUTT ARTICLES should be sent to the Scuttlebutt editor, Leonard Kay, KB2R, preferably by E-mail at Ikay@tiac.net,or on 3½" disk (in MSWord format or text file) by snail mail to YCCC Scuttlebutt, Box 1297, Burlington, MA 01803. The deadline for each issue is the 10th of the preceding month. CONTEST SCORES should be sent to the club scorekeeper, Dave Hoaglin, K1HT, preferably by packet or by E-mail at dave_hoaglin@abtassoc.com. Please include details such as numbers of QSOs, QSO points (if appropriate), and multipliers (all types); entry category; and power.

CLUB GOODIES BADGES YCCC badges are available from Ric, KV1W. Send \$2, name and call desired on the badge, and your mailing address to: Ric Plummer - YCCC Badge, 195 Highland Street, Berlin, MA 01503. APPAREL Len, KB2R, coordinates group purchases of club jackets and polo shirts. Contact Len for price info or see the order form below. T-shirts are available at meetings. QSL CARDS are ordered through John Dorr, K1AR. To order, send John packet mail, or E-mail at k1ar@contesting.com, detailing exactly what you want the card to say. There are 2 lines of text available for awards, etc. You will receive a proof by return mail. Approve the proof, making any corrections, and return to John with payment (make checks out to John, not YCCC). Current price is \$54 for 2000 cards. Normal turnaround is 30 days after approving proof. MEMBERSHIP ROSTER is mailed annually with the August issue of the Scuttlebutt, and to new members when they join. Updates are published in 'Movers and Shakers' when members move or change callsigns. If you want a new copy of the club roster, contact the Scuttlebutt editor, Len, KB2R. INTERNET REFLECTOR There is an Internet mailing list for YCCC members. To subscribe, send mail to yccc-request@yccc.org. Include the words "subscribe yccc" in the body of the mail message.

CT CONTEST LOGGING SOFTWARE is available from Matt, KC1XX. Orders: 603-878-4600. Support: 603-878-4200 CT-BBS: 603-878-1900 (28.8k, 8,N,1). As of this writing there is no E-mail address, but Matt says something is coming. There is an Internet mailing list for CT users. To subscribe, send mail to ct-user-request@ve7tcp.ampr.org, and include the single word SUBSCRIBE in the body. The CT reflector is also the best way to get CT country file updates. These updates may also be obtained from the CT BBS, or send a blank formatted disk and \$1.00 for postage to Jim Reisert, AD1C, 181 Littleton Road #324, Chelmsford, MA 01824.

W1 QSL BUREAU is sponsored by the YCCC. Keep your account up to date with SASEs, or send a check. Stamps are sold at face value, envelopes are 10 cents each. Address: W1 QSL Bureau, YCCC, PO Box 80216, Springfield, MA 01138. Email address: w1qsl@yccc.org.

ARRL LIAISON is none other than our fearless leader, Tom, K1KI. PACKET NETWORK information is available from Charlie Carroll, K1XX, Candlelight Rd., Ringe NH 03461.

YCCC Apparel Order Form

Don't be fooled by low-quality apparel from *other* contest clubs costing *twice* as much! This is the *real*, *original* contest clothing line!

Show your contesting pride! Order a YCCC Polo Shirt or 'Starter' Jacket! Copy the form below, circle your choices, and mail with payment in full (checks payable to Len) to: Leonard Kay KB2R, Box 1297, Burlington, MA 01803, or send Len a packet or Internet message with all the needed info.

Polo shirt (100% cotton)	Color:	White(with blue stitching)		Royal Blue (with white stitchi		th white stitching)	
Clipper ship and 'YCCC' embroidered on breast	Size:	S (34-36)	M (38-40)	L (42-44)	XL (46-48)	XXL (50-52) (add \$	52)
Price: \$24.00							
	Name and Call? Add \$5, print on left as you want them to appear.						
'Starter' Jacket: (NOTE new prices for Fall 1996)	Type:	Satin/Qu \$6	uilted linir 35	ng Sati	in/Cotton \$60	lining	Nylon/cotton lining \$60
Large clipper ship and 'Yankee Clipper Contest Club'' embroidered on back;	Size:	S (34-36)	M (38-40)	L (42-44)	XL (46-48)	XXL (50-52) (add \$2)	, ,
Name/Call embroidered on breast	Color:	Royal B	lue	Navy Bl	ue	Black	
	Name/Call (included):						
For both: add \$4 if you want it shipped to your QTH (instead of picking it up at a meeting)							

The YCCC Scuttlebutt -----

Upcoming Meetings

Date	Туре	Place		
Apr. 6 (Sun)	General	Sturbridge, MA		
June 8 (Sun)	General	Sturbridge, MA		
July - Aug	Special	Various BBQs		
Sep. 29 (Sun)	General	Sturbridge, MA		
Dec. 7 (Sun)	General	Sturbridge, MA		

For more information about a special meeting, contact the Area Manager of the indicated section.

Ship's Log	April, 1997 Issue 1	28
Captain's Cabin	Tom Frenaye, K1KI	1
April Meeting Agenda	Dean Straw, N6BV	1
Beverage Notes	Glenn Swanson, KB1GW	2
Flotsam and Jetsam	Jack Schuster, W1WEF	4
CQ 160m Claimed Scores	Dave Hoaglin, K1HT	5
ARRL DX Claimed Score	es Dave Hoaglin, K1HT	6-9
The Open Logger Project	Dave Robbins, K1TTT	10
10 and 20 Years Ago	Leonard Kay, KB2R	11
Secretary's Report	Charlotte Richardson, KQ1F	12
Poop Deck		14
PJ9 Perspective	Jack Schuster, W1WEF	18

The next general meeting of the Yankee Clipper Contest Club will be held on Sunday, April 6

at 1:00 PM at the Host Hotel in Sturbridge, MA, near the intersection of I-84 and I-90. To get there, exit I-84 onto Route 20 West. Go through two sets of stoplights and turn right just before the Burger King into the hotel parking lot. C U there!

Inside: Lots of Claimed Scores and other stuff!
There's elections and proposals at the April meeting! Come and vote!

The YCCC Scuttlebutt Box 1297 Burlington, MA 01803